|
典型黄土灌区土壤水分零通量面变化特征研究
|
Abstract:
黄土灌区土壤水零通量面动态对作物生长状况和水生态稳定性有着重要的影响作用,研究其运动变化特征对灌区地下水合理利用和水生态稳定意义重大。本文以宝鸡峡灌区作为研究区,基于钻孔资料,以灌溉水入渗和降雨入渗为供水条件,运用Hydrus软件,探讨黄土中水分的运动特征和土壤水分零通量面位置的变化,构建多层黄土条件下水分入渗和土壤水分零通量面位置变化模型,探索维持土壤水分含量稳定(零通量面下移极限)的途径。主要结论:1) 人工灌溉下发散型零通量面大多出现在距土壤表面20~30 cm之间,天然降雨下发散型零通量面大多出现在距土壤表面10~20 cm之间;2) 天然降雨情况下缺失中更新统下部黄土层会使发散型零通量面的厚度增大,变化更剧烈。人工灌溉条件下地层结构对零通量面的影响较小;3) 供水时段的合理分配对于维持土壤水分含量稳定有较大的影响。研究可为黄土灌区地下水运动参数的确定、作物需水预测和地下水农业污染研究提供理论基础。
Dynamic of soil water’s Zero Flux Plane (ZFP) in loess irrigation area has important influence on crop growth status and water ecological stability, and study on its movement is of great significance to the ra-tional utilization of groundwater and water ecological governance and stable restoration in irrigated area. Taking Baojixia irrigation area as the research area, based on the borehole data, and setting irrigation water and rainfall infiltration as the water supply conditions, using the Hydrus, this paper discusses the seepage movement characteristics of water in loess and the position changing of soil moisture ZFP, and constructs a model of water infiltration and soil moisture’s ZFP position in multi-layer soils. Suggestions are put forward to maintain the stability of soil moisture content (downward shift limit of ZFP). Main con-clusions are as follows: 1) Most of the divergent ZFP under artificial irrigation occurbetween 20~30 cm from the soil surface, and most of the divergent ZFP under natural precipitation appear between 10~20 cm from the soil surface, 2) The absence of the lower mesopleistic loess layer under natural precipitation increases the thickness of the divergent ZFPand change more drastically. Under artificial irrigation condi-tions, the substructure has little influence on the ZFP, and 3) The reasonable allocation of water supply period has a greater impact on maintaining the stability of soil moisture content (downward shift limit of the ZFP). This study can provide a solid theoretical basis for the determination of groundwater movement parameters, the forecast of the water demand of crops, and the research of groundwater agricultural pol-lution in loess irrigation area.
[1] | 贾政强. 渭北黄土台原灌区地下水数值模拟研究[D]: [硕士学位论文]. 杨凌: 西北农林科技大学, 2010.
JIA Zhengqiang. Numerical simulation study on groundwater in Weibei loess mesa irrigation. Master’s Thesis, Yangling: NW A&F University. (in Chinese) |
[2] | 潘振辉, 李萍, 肖涛. 黄土水分入渗规律的数值模拟研究[J]. 西北大学学报(自然科学版), 2021, 51(3): 470-484.
PAN Zhenhui, LI Ping and XIAO Tao. The law of water infiltration in loess based onnumerical simulation. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 470-484. (in Chinese) |
[3] | 赵志强, 戴福初, 闵弘, 涂新斌. 黄土中灌溉水入渗过程的现场试验研究[J]. 岩土工程学报, 2022, 44(3): 569-575.
ZHAO Zhiqiang, DAI Fuchu, MIN Hong and TU Xinbin. Field tests on irrigation infiltration in thick loess. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 569-575. (in Chinese) |
[4] | WANG, G. L., LI, T. L., XING, X. L. and ZOU, Y. Re-search on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China. Environmental Earth Sciences, 2015, 73(12): 7933-7944. |
[5] | 王佩浩, 张茜, 张吴平. 基于数值方法的农田土壤零通量面的模拟[J]. 湖南农业科学, 2019(3): 80-84.
WANG Peihao, ZHANG Xi and ZHANG Wuping. Simulation of zero-flux plane of farmland soil based on numerical method. Hunan Agricultural Sciences, 2019(3): 80-84. (in Chinese) |
[6] | 杨柳悦, 严宝文. 黄土中渗流水的运动特征研究[J]. 水土保持研究, 2013, 20(6): 6-9.
YANG Liuyue, YAN Baowen. Study on the movement characteristics of seepage water in loess. Study of Soil and Water Con-servation, 2013, 20(6): 6-9. (in Chinese) |
[7] | 刘禹含, 张成福, 贺帅, 魏荣博, 苗林, 龚旭楠. HYDRUS模型研究进展[J]. 绿色科技, 2022, 24(16): 61-66.
LIU Yuhan, ZHANG Chengfu, HE Shuai, et al. Research progress of HYDRUS model. Green Technology, 2022, 24(16): 61-66. (in Chinese) |
[8] | SELKER, J., STEWART, R. Soil physics with HYDRUS: Modeling and applications. Vadose Zone Journal, 2011, 10(4): 1338-1339. https://doi.org/10.2136/vzj2011.0085br |
[9] | 杜伟, 魏晓妹, 李萍, 李鹏, 韩业珍. 变化环境下灌区地下水动态演变趋势及驱动因素[J]. 排灌机械工程学报, 2013, 31(11): 993-999.
DU Wei, WEI Xioaomei, LI Ping, et al. Dynamic evolution trend and driving factors of groundwater in irrigated area under changing environment. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(11): 993-999. (in Chinese) |
[10] | 高震国, 钟瑞林, 杨帅, 李小港, 杨晓英. HYDRUS模型在中国的最新研究与应用进展[J]. 土壤, 2022, 54(2): 219-231.
GAO Zhenguo, ZHONG Ruilin, YANG Shuai, et al. Recent research and application progress of Hydrus model in China. Soil, 2022, 54(2): 219-231. (in Chinese) |
[11] | 包含. 毛乌素沙地农田水分动态变化规律与数值模拟[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2013.
BAO Han. Dynamic variation law and numerical simulation of water in farmland in Maowusu sandy land. Master’s Thesis, Bei-jing: China University of Geosciences (Beijing), 2013. (in Chinese) |
[12] | 邵东国, 杨霞, 徐保利, 等. 南方丘陵区多层土壤结构水平和垂向渗流特征试验与模拟研究[J]. 水利学报, 2017, 48(7): 799-807.
SHAO Dongguo, YANG Xia, XU Baoli, et al. Experimental and simulation study on horizontal and vertical seepage characteris-tics of multi-layer soil structure in southern hilly area. Journal of Hydraulic Engineering, 2017, 48(7): 799-807. (in Chinese) |
[13] | 吴沿友, 胡林生, 谷睿智, 等. 两种土壤含水量与水势关系[J]. 排灌机械工程学报, 2017, 35(4): 351-356.
WU Yanyou, HU Linsheng, GU Ruizhi, et al. Relationship between soil water potential and water content of two soils. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2017, 35(4): 351-356. (in Chinese) |
[14] | 毛晓敏, 尚松浩. 计算层状土稳定入渗率的饱和层最小通量法[J]. 水利学报, 2010, 41(7): 810-817.
MAO Xiaomin, SHANG Songhao. Minimum flux method of saturated layer for calculating stable infiltration rate of layered soil. Journal of Hydraulic Engineering, 2010, 41(7): 810-817. (in Chinese) |
[15] | LOHEIDE II, S. P. A method for estimating sub-daily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology, 2008, 1(1): 59-66. https://doi.org/10.1002/eco.7 |