全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Utilizing Artificial Intelligence (AI) for the Identification and Management of Marine Protected Areas (MPAs): A Review

DOI: 10.4236/gep.2023.119008, PP. 118-132

Keywords: Marine Protected Areas, Artificial Intelligence, Automation, Decision-Making Tools

Full-Text   Cite this paper   Add to My Lib

Abstract:

The article discusses the application of artificial intelligence (AI) and automation in marine conservation, specifically in relation to the protection of marine ecosystems and the definition of marine protected areas (MPAs). It highlights the threats that marine ecosystems face due to human activities and emphasizes the importance of effective management and conservation efforts. By improving data gathering, processing, monitoring, and analysis, artificial intelligence, and automation, they can revolutionize marine research. In conclusion, this study emphasizes the importance of AI and automation in marine conservation responsibly and ethically. In order to integrate these technologies into decision-making processes, stakeholders and marine conservation professionals must collaborate. Through the use of artificial intelligence and automation, marine conservation efforts can be transformed by establishing new methods of collecting and analyzing data, making informed decisions, and managing marine ecosystems.

References

[1]  Addison, P. F. E., Collins, D. J., Trebilco, R., Howe, S., Bax, N., Hedge, P. et al. (2018). A New Wave of Marine Evidence-Based Management: Emerging Challenges and Solutions to Transform Monitoring, Evaluating, and Reporting. ICES Journal of Marine Science, 75, 941-952.
https://doi.org/10.1093/icesjms/fsx216
[2]  Ahmed, A. N., Othman, F. B., Afan, H. A., Ibrahim, R. K., Fai, C. M., Hossain, M. S., Ehteram, M., & Elshafie, A. (2019). Machine Learning Methods for Better Water Quality Prediction. Journal of Hydrology, 578, Article ID: 124084.
https://doi.org/10.1016/j.jhydrol.2019.124084
[3]  Alonso, S., Montes, R., Molina, D., Palomares, I., Martínez-Cámara, E., Chiachio, M. et al. (2021). Ordering Artificial Intelligence Based Recommendations to Tackle the SDGs with a Decision-Making Model Based on Surveys. Sustainability, 13, Article 6038.
https://doi.org/10.3390/su13116038
[4]  Beyan, C., & Browman, H. I. (2020). Setting the Stage for the Machine Intelligence Era in Marine Science. ICES Journal of Marine Science, 77, 1267-1273.
https://doi.org/10.1093/icesjms/fsaa084
[5]  Chambault, P., Fossette, S., Heide-Jørgensen, M. P., Jouannet, D., & Vély, M. (2021). Predicting Seasonal Movements and Distribution of the Sperm Whale Using Machine Learning Algorithms. Ecology and Evolution, 11, 1432-1445.
https://doi.org/10.1002/ece3.7154
[6]  DeFries, R. S., & Chan, J. C. W. (2000). Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data. Remote Sensing of Environment, 74, 503-515.
https://doi.org/10.1016/S0034-4257(00)00142-5
[7]  Demetillo, A. T., & Taboada, E. B. (2019). Real-Time Water Quality Monitoring for Small Aquatic Area Using Unmanned Surface Vehicle. Engineering, Technology & Applied Science Research, 9, 3959-3964.
https://doi.org/10.48084/etasr.2661
[8]  Díaz-García, J. M., López-Barrera, F., Pineda, E., Toledo-Aceves, T., & Andresen, E. (2020). Comparing the Success of Active and Passive Restoration in a Tropical Cloud Forest Landscape: A Multi-Taxa Fauna Approach. PLOS ONE, 15, e0242020.
https://doi.org/10.1371/journal.pone.0242020
[9]  Ditria, E. M., Buelow, C. A., Gonzalez-Rivero, M., & Connolly, R. M. (2022). Artificial Intelligence and Automated Monitoring for Assisting Conservation of Marine Ecosystems: A Perspective. Frontiers in Marine Science, 9, Article 918104.
https://doi.org/10.3389/fmars.2022.918104
[10]  Farmer, N. A., Powell, J. R., Morris Jr, J. A., Soldevilla, M. S., Wickliffe, L. C., Jossart, J. A. et al. (2022). Modeling Protected Species Distributions and Habitats to Inform Siting and Management of Pioneering Ocean Industries: A Case Study for Gulf of Mexico Aquaculture. PLOS ONE, 17, e0267333.
https://doi.org/10.1371/journal.pone.0267333
[11]  Finn, J. T., Brownscombe, J. W., Haak, C. R., Cooke, S. J., Cormier, R., Gagne, T., & Danylchuk, A. J. (2014). Applying Network Methods to Acoustic Telemetry Data: Modeling the Movements of Tropical Marine Fishes. Ecological Modelling, 293, 139-149.
https://doi.org/10.1016/j.ecolmodel.2013.12.014
[12]  Fox, A. D., Corne, D. W., Mayorga Adame, C. G., Polton, J. A., Henry, L. A., & Roberts, J. M. (2019). An Efficient Multi-Objective Optimization Method for Use in the Design of Marine Protected Area Networks. Frontiers in Marine Science, 6, Article 17.
https://doi.org/10.3389/fmars.2019.00017
[13]  Gaines, S. D., White, C., Carr, M. H., & Palumbi, S. R. (2010). Designing Marine Reserve Networks for Both Conservation and Fisheries Management. Proceedings of the National Academy of Sciences of the United States of America, 107, 18286-18293.
https://doi.org/10.1073/pnas.0906473107
[14]  Galaz, V., Centeno, M. A., Callahan, P. W., Causevic, A., Patterson, T., Brass, I. et al. (2021). Artificial Intelligence, Systemic Risks, and Sustainability. Technology in Society, 67, Article ID: 101741.
https://doi.org/10.1016/j.techsoc.2021.101741
[15]  Geleyn, J.-F. (1988). Interpolation of Wind, Temperature and Humidity Values from Model Levels to the Height of Measurement. Tellus A: Dynamic Meteorology and Oceanography, 40, 347-351.
https://doi.org/10.3402/tellusa.v40i4.11805
[16]  Isabelle, D. A., & Westerlund, M. (2022). A Review and Categorization of Artificial Intelligence-Based Opportunities in Wildlife, Ocean and Land Conservation. Sustainability, 14, Article 1979.
https://doi.org/10.3390/su14041979
[17]  Islam, M. (2020). Data Analysis: Types, Process, Methods, Techniques and Tools. International Journal on Data Science and Technology, 6, 10-15.
https://doi.org/10.11648/j.ijdst.20200601.12
[18]  Kalinić, H., Mihanović, H., Cosoli, S., Tudor, M., & Vilibić, I. (2017). Predicting Ocean Surface Currents Using Numerical Weather Prediction mOdel and Kohonen Neural Network: A Northern Adriatic Study. Neural Computing and Applications, 28, 611-620.
https://doi.org/10.1007/s00521-016-2395-4
[19]  Kennedy, Y., & Aschenbrand, E. (2023). Monitoring in Protected Areas: The Importance of Monitoring in Marine Protected Areas Governance, Administration and Management for Biosphere Reserves and Protected Areas.
https://www.researchgate.net/publication/369560100_Monitoring_in_Protected_Areas_The_Importance_of_Monitoring_in_Marine_Protected_Areas_Governance_administration_and_management_for_biosphere_reserves_and_protected_areas
[20]  Klemas, V. V. (2015). Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. Journal of Coastal Research, 31, 1260-1267.
https://doi.org/10.2112/JCOASTRES-D-15-00005.1
[21]  Koutsomitopoulos, V., & Le, M. (2020). Classification of Marine Mammal Vocalizations Using Machine Learning. The Journal of the Acoustical Society of America, 148, 2443-2443.
https://doi.org/10.1121/1.5146739
[22]  Li, Y., Liu, F., Wang, K., Huang, H., Wei, F., & Qi, H. (2020). Research on Quality Control of Marine Monitoring Data Based on Extreme Learning Machine. In X. Sun, J. Wang, & E. Bertino (Eds.), ICAIS 2020: Artificial Intelligence and Security, Lecture Notes in Computer Science (Vol. 12239, pp. 327-338). Springer.
https://doi.org/10.1007/978-3-030-57884-8_29
[23]  Lindenmayer, D. B., Likens, G. E., Andersen, A., Bowman, D., Bull, C. M., Burns, E. et al. (2012). Value of Long-Term Ecological Studies. Austral Ecology, 37, 745-757.
https://doi.org/10.1111/j.1442-9993.2011.02351.x
[24]  Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G., & Fisher, R. B. (2017). Deep Learning for Coral Classification. In P. Samui, S. Sekhar, & V. E. Balas (Eds.), Handbook of Neural Computation (pp. 383-401). Academic Press.
https://doi.org/10.1016/B978-0-12-811318-9.00021-1
[25]  Marshall, C. E., Glegg, G. A., & Howell, K. L. (2014). Species Distribution Modelling to Support Marine Conservation Planning: The Next Steps. Marine Policy, 45, 330-332.
https://doi.org/10.1016/j.marpol.2013.09.003
[26]  Martínez-Harms, M. J., & Balvanera, P. (2012). Methods for Mapping Ecosystem Service Supply: A Review. International Journal of Biodiversity Science, Ecosystem Services & Management, 8, 17-25.
https://doi.org/10.1080/21513732.2012.663792
[27]  Melià, P. (2017). Multi-Criteria Decision-Making for Marine Protected Area Design and Management. In P. D. Goriup (Ed.), Management of Marine Protected Areas: A Network Perspective (pp. 125-144). John Wiley & Sons Ltd.
https://doi.org/10.1002/9781119075806.ch7
[28]  Mellin, C., Aaron MacNeil, M., Cheal, A. J., Emslie, M. J., & Julian Caley, M. (2016). Marine Protected Areas Increase Resilience among Coral Reef Communities. Ecology Letters, 19, 629-637.
https://doi.org/10.1111/ele.12598
[29]  Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological Niche Models and Species Distribution Models in Marine Environments: A Literature Review and Spatial Analysis of Evidence. Ecological Modelling, 415, Article ID: 108837.
https://doi.org/10.1016/j.ecolmodel.2019.108837
[30]  Moniruzzaman, M., Islam, S. M. S., Bennamoun, M., & Lavery, P. (2017). Deep Learning on Underwater Marine Object Detection: A Survey. In J. Blanc-Talon, R. Penne, W. Philips, D. Popescu, & P. Scheunders (Eds.), Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science (Vol. 10617, pp. 150-160). Springer International Publishing.
https://doi.org/10.1007/978-3-319-70353-4_13
[31]  Morrison, E. B., & Lindell, C. A. (2011). Active or Passive Forest Restoration? Assessing Restoration Alternatives with Avian Foraging Behavior. Restoration Ecology, 19, 170-177.
https://doi.org/10.1111/j.1526-100X.2010.00725.x
[32]  Nguyen-Trong, K., & Tran-Xuan, H. (2022). Coastal Forest Cover Change Detection Using Satellite Images and Convolutional Neural Networks in Vietnam. IAES International Journal of Artificial Intelligence, 11, 930-938.
https://doi.org/10.11591/ijai.v11.i3.pp930-938
[33]  OECD (2021). Artificial Intelligence, Machine Learning and Big Data in Finance: Opportunities, Challenges, and Implications for Policy Makers. OECD.
[34]  Paduan, J. D., & Washburn, L. (2013). High-Frequency Radar Observations of Ocean Surface Currents. Annual Review of Marine Science, 5, 115-136.
https://doi.org/10.1146/annurev-marine-121211-172315
[35]  Patel, K., Bhatt, C., & Mazzeo, P. L. (2022). Deep Learning-Based Automatic Detection of Ships: An Experimental Study Using Satellite Images. Journal of imaging, 8, Article 182.
https://doi.org/10.3390/jimaging8070182
[36]  Perring, M. P., Erickson, T. E., & Brancalion, P. H. (2018). Rocketing Restoration: Enabling the Upscaling of Ecological Restoration in the Anthropocene. Restoration Ecology, 26, 1017-1023.
https://doi.org/10.1111/rec.12871
[37]  Ping, B., Meng, Y., Xue, C., & Su, F. (2023). Oceanic Primary Production Estimation Based On Machine Learning. Journal of Geophysical Research: Oceans, 128, e2022JC018980.
https://doi.org/10.1029/2022JC018980
[38]  Possingham, H. P., Bode, M., & Klein, C. J. (2015). Optimal Conservation Outcomes Require Both Restoration and Protection. PLOS Biology, 13, e1002052.
https://doi.org/10.1371/journal.pbio.1002052
[39]  Ridge, J. T., Gray, P. C., Windle, A. E., & Johnston, D. W. (2020). Deep Learning for Coastal Resource Conservation: Automating Detection of Shellfish Reefs. Remote Sensing in Ecology and Conservation, 6, 431-440.
https://doi.org/10.1002/rse2.134
[40]  Sink, K. J., Adams, L. A., Franken, M.-L., Harris, L. R., Currie, J., Karenyi, N., Dayaram, A., Porter, S., Kirkman, S., Pfaff, M., van Niekerk, L., Atkinson, L. J., Bernard, A., Bessinger, M., Cawthra, H., de Wet, W., Dunga, L., Filander, Z., Green, A., Herbert, D., Holness, S., Lamberth, S., Livingstone, T., Lück-Vogel, M., Mackay, F., Makwela, M., Palmer, R., Van Zyl, W., & Skowno, A. (2023). Iterative Mapping of Marine Ecosystems for Spatial Status Assessment, Prioritization, and Decision Support. Frontiers in Ecology and Evolution, 11, Article 1108118.
https://doi.org/10.3389/fevo.2023.1108118
[41]  Smith, R. N., Chao, Y., Li, P. P., Caron, D. A., Jones, B. H., & Sukhatme, G. S. (2010). Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions from a Regional Ocean Model. The International Journal of Robotics Research, 29, 1475-1497.
https://doi.org/10.1177/0278364910377243
[42]  Song, T., Pang, C., Hou, B., Xu, G., Xue, J., Sun, H., & Meng, F. (2023). A Review of Artificial Intelligence in Marine Science. Frontiers in Earth Science, 11, Article 1090185.
https://doi.org/10.3389/feart.2023.1090185
[43]  Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sensing, 12, Article 1135.
https://doi.org/10.3390/rs12071135
[44]  Towler, R. H., Jech, J. M., & Horne, J. K. (2003). Visualizing Fish Movement, Behavior, and Acoustic Backscatter. Aquatic Living Resources, 16, 277-282.
https://doi.org/10.1016/S0990-7440(03)00011-1
[45]  Traganos, D., & Reinartz, P. (2018). Machine Learning-Based Retrieval of Benthic Reflectance and Posidonia oceanica Seagrass Extent Using a Semi-Analytical Inversion of Sentinel-2 Satellite Data. International Journal of Remote Sensing, 39, 9428-9452.
https://doi.org/10.1080/01431161.2018.1519289
[46]  Villon, S., Mouillot, D., Chaumont, M., Darling, E. S., Subsol, G., Claverie, T., & Villéger, S. (2018). A Deep Learning Method for Accurate and Fast Identification of Coral Reef Fishes in Underwater Images. Ecological Informatics, 48, 238-244.
https://doi.org/10.1016/j.ecoinf.2018.09.007
[47]  Ward, D., Melbourne-Thomas, J., Pecl, G. T., Evans, K., Green, M., Mccormack, P. C. et al. (2022). Safeguarding Marine Life: Conservation of Biodiversity and Ecosystems. Reviews in Fish Biology and Fisheries, 32, 65-100.
https://doi.org/10.1007/s11160-022-09700-3
[48]  Watanabe, J. I., Shao, Y., & Miura, N. (2019). Underwater and Airborne Monitoring of Marine Ecosystems and Debris. Journal of Applied Remote Sensing, 13, Article ID: 044509.
https://doi.org/10.1117/1.JRS.13.044509
[49]  Zhang, F., Marani, G., Smith, R. N., & Choi, H. T. (2015). Future Trends in Marine Robotics [TC Spotlight]. IEEE Robotics & Automation Magazine, 22, 14-122.
https://doi.org/10.1109/MRA.2014.2385561
[50]  Zhou, Z., Ma, L., Fu, T., Zhang, G., Yao, M., & Li, M. (2018). Change Detection in Coral Reef Environment Using High-Resolution Images: Comparison of Object-Based and Pixel-Based Paradigms. ISPRS International Journal of Geo-Information, 7, Article 441.
https://doi.org/10.3390/ijgi7110441
[51]  Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., & Ye, L. (2022). A Review of the Application of Machine Learning in Water Quality Evaluation. Eco-Environment & Health, 1, 107-116.
https://doi.org/10.1016/j.eehl.2022.06.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133