全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Mapping of Kakobola and Its Surroundings by Analyzing Geomagnetic Data

DOI: 10.4236/gep.2023.119006, PP. 64-89

Keywords: Magnetic Anomalies, HGM, TAHG, Lineaments, Shallow Structures

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study focuses on the Kakobola region and its surroundings where cavities discovered in its basement may represent a major risk for the hydroelectric dam erected on the Lufuku River near the Kakobola city and the civil engineering works in the study area. In order to deepen the studies related to this understudied region and provide decision-makers with information that will enable them to make the necessary and appropriate decisions regarding the development of this area, a study based on the analysis of geomagnetic data was carried out using certain methods revealing more shallow than deep structures, and others highlighting the limits of both shallower and deeper structures. Total magnetic anomalies and reduced to equator (RTE) magnetic anomalies were used to map the subsurface of the Kakobola region and its surroundings. In order to detect the edges of magnetized structures, the horizontal gradient magnitude (HGM), the analytic signal (AS), the horizontal gradient of tilt angle (HGTA), the tilt angle (TA), the theta map (TM), the enhanced total horizontal derivative of the tilt angle (ETHDR), the tilt angle of the horizontal gradient (TAHG), and the tilt angle of analytic signal (TAAS) were used. The study area is characterized by two areas of low values of magnetic anomalies and two other sources of high magnetic anomalies located in the bed and the neighborhood of the two major rivers in the region. The shallow sources of magnetic anomalies are lying in the bed and the vicinity of the same rivers in the study area. The magnetic sources in the study area are connected and almost linear. Several magnetic lineaments identified in this region by different methods present several preferential directions, but the most predominant directions are NE-SW, NW-SE,

References

[1]  Arisoy, M., & Dikmen, Ü. (2013). Edge Detection of Magnetic Sources Using Enhanced Total Horizontal Derivative of the Tilt Angle. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 34, 73-82.
[2]  Blakely, R. (1995). Potential Theory in Gravity and Magnetic Applications (pp. 311-358). Cambridge University Press.
https://doi.org/10.1017/CBO9780511549816.
[3]  Cooper, G. R. J. (2014). Reducing the Dependence of the Analytic Signal Amplitude of Aeromagnetic Data on the Source Vector Direction. Geophysics, 79, J55-J60.
https://doi.org/10.1190/geo2013-0319.1
[4]  Cordell, L., & Grauch, V. J. (1982). Mapping Basement Magnetization Zones from Aeromagnetic Data in the San Juan Basin, New Mexico. In 52nd Annual International Meeting (pp. 246-248). Society of Exploration Geophysicists.
https://doi.org/10.1190/1.1826915
[5]  De Ploey, J., Lepersonne, J., & Stoops, G. (1968). Sédimentologie et origine des sables de la série des sables ocre et de la série des grès polymorphes (système du Kalahari) au Congo occidental. Annales des Sciences Géologiques, Série No. 61, Musée Royal de l’Afrique Centrale, 69-72.
[6]  Domzalski, W. (1966). Interpretation of Aeromagnetic in Evaluation of Structural Control of Mineralization. Geophysical Prospecting, 14, 273-291.
https://doi.org/10.1111/j.1365-2478.1966.tb01761.x
[7]  Eldosouky, A. M., Thanh Pham, L., Mohmed, H., & Pradhan, B. (2020). A Comparative Study of THG, AS, TA, Theta, TDX and LTHG Techniques for Improving Source Boundaries Detection of Magnetic Data Using Synthetic Models: A Case Study from G. Um Monqul, North Eastern Desert, Egypt. Journal of African Earth Sciences, 170, Article ID: 103940.
https://doi.org/10.1016/j.jafrearsci.2020.103940
[8]  Elkhateeb, S. O., Eldosouky, A. M., & Aboelabas, S. (2018). Interpretation of Aeromagnetic Data to Delineate Structural Complexity Zones and Porphyry Intrusions at Samr El Qaa Area, North Eastern Desert, Egypt. International Journal of Novel Research in Civil Structural and Earth Sciences, 5, 1-9.
[9]  Ferreira, F. J. F., de Souza, J., Bongiolo, A. de B. e S., & de Castro, L. G. (2013). Enhancement of the Total Horizontal Gradient of Magnetic Anomalies Using the Tilt Angle. Geophysics, 78, J33-J41.
https://doi.org/10.1190/geo2011-0441.1
[10]  Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E. et al. (2002). Advanced Spectral Methods for Climatic Time Series. Reviews of Geophysics, 40, 3-1-3-41.
https://doi.org/10.1029/2000RG000092
[11]  Keating, P., & Sailhac, P. (2004). Use of the Analytic Signal to Identify Magnetic Anomalies Due to Kimberlite Pipes. Geophysics, 69, 180-190.
https://doi.org/10.1190/1.1649386
[12]  Mbata Muliwavyo, A., Musitu Muliwavyo, J., Tshitenge Mbuebue, J.-M., Musitu, L., & Umba-Di-Mbudi, C. N. (2023). Structural Study of the Kakobola Area and Its Surroundings by Detecting the Edges of Gravity Anomaly Sources. Journal of Geoscience and Environment Protection, 11, 81-97.
https://doi.org/10.4236/gep.2023.117006
[13]  Miller, H. G., & Singh, V. (1994). Potential Field Tilt—A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32, 213-217.
https://doi.org/10.1016/0926-9851(94)90022-1
[14]  Mwanamoki, P. M., Devarajan, N., Niane, B., Ngelinkoto, P., Thevenon, F., Nlandu, J. W. et al. (2015). Trace Metal Distributions in the Sediments from River-Reservoir Systems: Case of the Congo River and Lake Ma Vallée, Kinshasa (Democratic Republic of Congo). Environmental Science and Pollution Research, 22, 586-597.
https://doi.org/10.1007/s11356-014-3381-y
[15]  Nabighian, M. N. (1972). The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation. Geophysics, 37, 507-517.
https://doi.org/10.1190/1.1440276
[16]  Nasuti, Y., & Nasuti, A. (2018). NTilt as an Improved Enhanced Tilt Derivative Filter for Edge Detection of Potential Field Anomalies. Geophysical Journal International, 214, 36-45.
https://doi.org/10.1093/gji/ggy117
[17]  Nasuti, Y., Nasuti, A., & Moghadas, D. (2018). STDR: A Novel Approach for Enhancing and Edge Detection of Potential Field Data. Pure and Applied Geophysics, 176, 827-841.
https://doi.org/10.1007/s00024-018-2016-5
[18]  Ndala, T. I., Kalanga, K. B., Musitu, M. J., Mpiana, K. C., Kanda, N. V., & N’Zau Umba-di-Mbudi, C. (2022). Caractérisations sédimentologique et pale environnementale du site de l’aménagement hydroélectrique deKakobola et ses environs (Province du Kwilu/RD Congo). Geo-Eco-Trop, 46, 315-328.
[19]  Ndala, T. I., Musitu, M. J., Kalanga, K. B., & N’Zau Umba-di-Mbudi, C. (2023). Caractérisation des grès Ceno-Mesozoiques du site d’aménagement hydroélectrique de Kakobola et ses environs par diffraction et fluorescence X (Province du Kwilu/RD Congo). Geo-Eco-Trop, 2, 329-342.
[20]  Pham, L. T. (2020). A Comparative Study on Different Filters for Enhancing Potential Field Source Boundaries: Synthetic Examples and a Case Study from the Song Hong Trough (Vietnam). Arabian Journal of Geosciences, 13, Article No. 723.
https://doi.org/10.1007/s12517-020-05737-5
[21]  Pham, L. T., Eldosouky, A. M., Oksum, E., & Saada, S. A. (2022). A New High Resolution Filter for Source Edge Detection of Potential Field Data. Geocarto International, 37, 3051-3068.
https://doi.org/10.1080/10106049.2020.1849414
[22]  Pham, L. T., Oksum, E., Do, T. D., Nguyen, D. V., & Eldosouky, A. M. (2021a). On the Performance of Phase-Based Filters for Enhancing Lateral Boundaries of Magnetic and Gravity Sources: A Case Study of the Seattle Uplift. Arabian Journal of Geosciences, 14, Article No. 129.
https://doi.org/10.1007/s12517-021-06511-x
[23]  Pham, L. T., Vu, M. D., & Le, S. T. (2021b). Performance Evaluation of Amplitude- and Phase-Based Methods for Estimating Edges of Potential Field Sources. Iranian Journal of Science and Technology, Transaction A: Science, 45, 1327-1339.
https://doi.org/10.1007/s40995-021-01122-3
[24]  Prasad, K. N. D., Pham, L. T., Singh, A. P., Eldosouky, A. M., Abdelrahman, K., Fnais, M. S., & Gómez-Ortiz, D. (2022). A Novel Enhanced Total Gradient (ETG) for Interpretation of Magnetic Data. Minerals, 12, Article 1468.
https://doi.org/10.3390/min12111468
[25]  Roest, W. R. J., Verhoef, J., & Pilkington, M. (1992). Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics, 57, 116-125.
https://doi.org/10.1190/1.1443174
[26]  Salem, A., Simon, W., Fairhead, J. D., Ravat, D., & Smith, R. (2007). Tilt-Depth Method: A Simple Depth Estimation Methodusing First-Order Magnetic Derivatives. The Leading Edge, 26, 1502-1505.
https://doi.org/10.1190/1.2821934
[27]  Souga, K. V., Ndougsa, M. T., Meying, A., Ngoh, J., & Ngoa, E. S. (2020). Structural Features Derived from a Multiscale Analysis and 2.75D Modelling of Aeromagnetic Data over the Pitoa-Figuil Area (Northern Cameroon). EGU (European Geosciences Union), 1-18.
[28]  Tshiwisa, I. N., Mayena, T. K., Osomba, D. W., Muliwavyo, A. M., Kabuya, B. K., Muliwavyo, J. M., & Umba-Di-Mbudi, C. N. (2023). On the Origin of the Cavities Present in the Sandstone Formations of the Hydroelectric Development Site of Kakobola and Its Surroundings (Kwilu Province/DRC). Journal of Geoscience and Environment Protection, 11, 170-191.
https://doi.org/10.4236/gep.2023.114010
[29]  Verduzco, B., Fairhead, J. D., Green, C. M., & MacKenzie, C. (2004). New Insights into Magnetic Derivatives for Structural Mapping. The Leading Edge, 23, 116-119.
https://doi.org/10.1190/1.1651454
[30]  Wijns, C., Perez, C., & Kowalczyk, P. (2005). Theta Map: Edge Detection in Magnetic Data. Geophysics, 70, 39-43.
https://doi.org/10.1190/1.1988184

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133