Synthesis, Structural Characterization and Antimicrobial Activity of a Novel Cobalt(II) Complex Based on 3-Methyl-1-Phenyl-4-(2-Thienoyl)-Pyrazol-5-One
New cobalt(II) complex, [Co(O2C15H11N2S)2(OH2)2]∙2H2O (1∙2H2O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)2∙6H2O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H2O. Compound 1∙2H2O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H2O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H2O displayed moderate activity (10 < MIC ≤ 100 μg/mL) on all Salmonellaand and, F1, and 018 yeasts. HL and 1∙2H2O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).
References
[1]
Kahn, O. and Martinez, C.J. (1998) Spin-Transition Polymers: From Molecular Materials toward Memory Devices. Science, 279, 44-48. https://doi.org/10.1126/science.279.5347.44
[2]
Sato, O., Iyoda, T., Fujishima, A. and Hashimoto, K. (1996) Photoinduced Magnetization of a Cobalt-Iron Cyanide. Science, 272, 704-705. https://doi.org/10.1126/science.272.5262.704
[3]
Yang, L., Jin, W. and Lin, J. (2000) Synthesis, Crystal Structure and Magnetic Properties of Novel Dinuclear Complexes of Manganese, Cobalt and Nickel with 4-Acetylbispyrazolone. Polyhedron, 19, 93-98. https://doi.org/10.1016/S0277-5387(99)00329-0
[4]
Soni, P.L. and Soni, V. (2021) Uses and Applications of Coordination Complexes and Transition Metals. In: Soni, P.L. and Soni, V., Eds., The Chemistry of Coordintion Complexes and Transition Metals, CRC Press, London, 1-402. https://doi.org/10.1201/9781003183426
[5]
Fustero, S., Sanchez-Rosello, M., Barrio, P. and Simon-Fuentes, A. (2011) From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles. Chemical Reviews, 111, 6984-7034. https://doi.org/10.1021/cr2000459
[6]
Terrett, N.K., Bell, A.S., Brown, D. and Ellis, P. (1996) Sildenafil (VIAGRATM), a Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction. Bioorganic & Medicinal Chemistry Letters, 6, 1819-1824. https://doi.org/10.1016/0960-894X(96)00323-X
[7]
Penning, T.D., Talley, J.J., Bertenshaw, S.R., Carter, J.S., Collins, P.W., Docter, S. and Isakson, P.C. (1997) Synthesis and Biological Evaluation of the 1, 5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)-3-(Trifluoromethyl)-1H-Pyrazol-1-yl]Benzenesulfonamide (SC-58635, Celecoxib). Journal of Medicinal Chemistry, 40, 1347-1365. https://doi.org/10.1021/jm960803q
[8]
Yamazaki, S., Hanada, M., Yanase, Y., Fukumori, C., Ogura, K., Saeki, T. and Umetani, S. (1999) A Simple Synthesis of Novel Extraction Reagents. 4-Acyl-5-Pyrazolone-Substituted Crown Ethers. Journal of the Chemical Society, Perkin Transactions 1, No. 6, 693-696. https://doi.org/10.1039/a809589b
[9]
Zheng, G., Wang, Q. and Luo, S. (2003) Synthesis and Characterization of Complexes of UO2 (II) and Th (IV) of Bis-Schiff Bases Derived from Furoylpyrazolone. Journal of Radioanalytical and Nuclear Chemistry, 258, 693-696. https://doi.org/10.1023/B:JRNC.0000011773.27858.f4
[10]
Zhang, H.Q., Li, J.Z., Zhang, Y., Zhang, D. and Su, Z.H. (2007) 4-[(Z)-(n-Butylamino)(2-furyl) Methylene]-3-Methyl-1-Phenyl-1H-Pyrazol-5(4H)-One. Acta Crystallographica Section E: Structure Reports Online, 63, o3536. https://doi.org/10.1107/S1600536807034216
[11]
Mariappan, G., Saha, B.P., Bhuyan, N.R., Bharti, P.R. and Kumar, D. (2010) Evaluation of Antioxidant Potential of Pyrazolone Derivatives. Journal of Advanced Pharmaceutical Technology & Research, 1, 260-267.
[12]
Asegbeloyin, J.N., Agbo, I.C., Ukoha, P.O., Babahan, I. and Okafor, E.C. (2014) Synthesis, Characterization and in vitro Antibacterial Activity of Co(II), Cu(II) and Ni(II) Complexes with 4-Acylpyrazol-5-One Schiff Bases. Asian Journal of Chemistry, 26, 8127-8133.
[13]
Ding, Y.J. and Zhao, C.X. (2014) Solvothermal Synthesis and Crystal Structure of Cobalt(II) Complex Derived from 4-Heterocyclic Acylpyrazolone. Asian Journal of Chemistry, 26, 3036-3038.
[14]
Marchetti, F., Pettinari, R. and Pettinari, C. (2015) Recent Advances in Acylpyrazolone Metal Complexes and Their Potential Applications. Coordination Chemistry Reviews, 303, 1-31. https://doi.org/10.1016/j.ccr.2015.05.003
[15]
Marchetti, F., Palmucci, J., Pettinari, C., Pettinari, R., Scuri, S., Grappasonni, I. and Crispini, A. (2016) Linkage Isomerism in Silver Acylpyrazolonato Complexes and Correlation with Their Antibacterial Activity. Inorganic Chemistry, 55, 5453-5466. https://doi.org/10.1021/acs.inorgchem.6b00495
[16]
Shaikh, I., Jadeja, R.N. and Patel, R. (2020) Three Mixed Ligand Mononuclear Zn(II) Complexes of 4-AcylPyrazolones: Synthesis, Characterization, Crystal Study and Anti-Malarial Activity. Polyhedron, 183, 1-11. https://doi.org/10.1016/j.poly.2020.114528
[17]
Vyas, K.M., Jadeja, R.N., Patel, D., Devkar, R.V. and Gupta, V.K. (2014) Effect of Ligand Substitution in Pyrazolone Based Binary and Ternary Cu(II) Complexes on DNA Binding, Protein Binding and Anti-Cancer Activity on A549 Lung Carcinoma Cell Lines. Polyhedron, 80, 20-33. https://doi.org/10.1016/j.poly.2013.12.037
[18]
Nakum, K. and Jadeja, R.N. (2018) Synthesis, Characterization, and Electrochemical Study of a Mononuclear Cu(II) Complex with a 4-Acyl Pyrazolone Ligand. Zeitschrift für Naturforschung B, 73, 713-718. https://doi.org/10.1515/znb-2018-0117
[19]
Uzoukwu, B.A. and Adiukwu, P.U. (1997) Metal-Nitrogen Bonding in 1-Phenyl-3-Methyl-4-Acylpyrazolone-5 Complexes of Lead(II): Synthesis and Spectroscopic Studies. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 27, 187-195. https://doi.org/10.1080/00945719708000145
[20]
Seyedi, S.M., Sandaroos, R. and Zohuri, G.H. (2010) Novel Cobalt(II) Complexes of Amino Acids-Schiff Bases Catalyzed Aerobic Oxidation of Various Alcohols to Ketones and Aldehyde. Chinese Chemical Letters, 21, 1303-1306. https://doi.org/10.1016/j.cclet.2010.06.009
Wang, Z., Zhang, H., Chen, Y., Huang, C., Sun, R., Cao, Y. and Yu, X. (2006) Two Fluorescent Coordination Polymers Constructed from Mixed Rigid and Flexible Carboxylate Ligands: Formation of Cross-Linking Helical and Zigzag Chains. Journal of Solid-State Chemistry, 179, 1536-1544. https://doi.org/10.1016/j.jssc.2006.01.062
[23]
Li, J., Li, J., Zhang, H. and Li, J. (2009) Solvothermal Syntheses and Crystal Structures of Two 4-Heterocyclic Acylpyrazolone Complexes. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 44, 669-674. https://doi.org/10.1002/crat.200800552
[24]
Shoaib, K., Rehman, W., Mohammad, B. and Ali, S. (2013) Proteomics and Bioinformatics Synthesis, Characterization and Biological Applications of Transition Metal Complexes of N-O Donor Schiff Bases. Journal of Proteomics & Bioinformatics, 6, 153-157. https://doi.org/10.4172/jpb.1000274
[25]
Streater, M., Taylor, P.D., Hider, R.C. and Porter, J. (1990) Novel 3-Hydroxy-2 (1H)-Pyridinones. Synthesis, Iron(III)-Chelating Properties and Biological Activity. Journal of Medicinal Chemistry, 33, 1749-1755. https://doi.org/10.1021/jm00168a033
[26]
Drozdov, A.A., Vertlib, V.A., Timokhin, I., Troyanov, S.I., Pettinari, C. and Marchetti, F. (2002) Complexes of Some d and f Elements with New 4-Acylpyrazol-5-ones: Synthesis and Study. Russian Journal of Coordination Chemistry, 28, 259-263. https://doi.org/10.1023/A:1015220003972
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42, 339-341. https://doi.org/10.1107/S0021889808042726
[31]
Eloff, J.N. (1998) A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria. Planta Medica, 64, 711-713. https://doi.org/10.1055/s-2006-957563
[32]
Dongmo, F.L.M., Kamsu, G.T., Nanfack, A.R.D., Ndontsa, B.L., Farooq, R., Bitchagno, G.T.M., Atia-tul-Waha and Tene, M. (2022) Chemical Constituents and Antibacterial Activity from the Fruits of Ficus sur Forssk. Investigational Medicinal Chemistry and Pharmacology, 5, 1-7. https://doi.org/10.31183/imcp.2022.00064
[33]
Kuete, V. (2010) Potential of Cameroonian Plants and Derived Products against Microbial Infections: A Review. Planta Medica, 76, 1479-1491. https://doi.org/10.1055/s-0030-1250027
[34]
Gatsing, D. and Adoga, G.I. (2007) Antisalmonellal Activity and Phytochemical Screening of the Various Parts of Cassia petersiana Bolle (Caesalpiniaceae). Microbiology, 2, 876-880. https://doi.org/10.3923/jm.2007.876.880
[35]
Gloe, K., Uzoukwu, B.A. and Rademacher, O. (2000) 4-Acetyl-5-Methyl-2-Phenyl-1, 2-Dihydro-3H-Pyrazol-3-One Hydrate. Acta Crystallographica Section C: Crystal Structure Communications, C56, 580-581. https://doi.org/10.1107/S0108270100015031
[36]
Marchetti, F., Pettinari, C. and Pettinari, R. (2005) Acylpyrazolone Ligands: Synthesis, Structures, Metal Coordination Chemistry and Applications. Coordination Chemistry Reviews, 249, 2909-2945. https://doi.org/10.1016/j.ccr.2005.03.013
[37]
Li, J.M., Li, J.Z., Zhang, H.Q. and Xu, L.Y. (2010) A Novel Cobalt(II) Acylpyrazolonate Complex with Intermolecular Hydrogen Bond: Synthesis, Structure and Properties. Inorganic Chemistry Communications, 13, 573-576. https://doi.org/10.1016/j.inoche.2010.01.023
[38]
Uzoukwu, B.A. (1993) Synthesis and Characterization of Cobalt(II) Complexes with Soke 4-Acyl Derivatives of 1-Phenyl-3-Methylpyrazolone-5. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 23, 1087-1095. https://doi.org/10.1080/15533179308016669
[39]
Dzoukwa, B.A. (1992) Synthesis, Structure, UV-Visible and Infrared Spectral Studies of 1-Phenyl-3-Methyl-4-Acylpyrazolone-5 Complexes with Vanadium(IV). Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 22, 185-194. https://doi.org/10.1080/00945719208021381
[40]
Pang, X.Z., Li, J.Z., Chen, L.S. and Zhang, H.Q. (2013) Synthesis, Crystal Structure, and Electrocatalytic Behavior of a Zinc(II) Complex Derived from a Heterocyclic Acylpyrazolone. Journal of Coordination Chemistry, 66, 915-925. https://doi.org/10.1080/00958972.2013.771775
[41]
Ogwuegbu, M.O. (1999) Synthesis and Characterization of Nitroacyl-5-Oxo-Pyrazole and Its Vanadium(V), Iron(III) and Cobalt(II) Complexes. Bulletin of the Chemical Society of Ethiopia, 13, 113-120. https://doi.org/10.4314/bcse.v13i2.21064
[42]
Akama, Y., Kajitani, M., Sugiyama, T. and Sugimori, A. (1997) Crystal Structure of Scandium Complex of 1-Phenyl-3-Methyl-4-Benzoyl-5-Pyrazolone. Analytical Sciences, 13, 155-157. https://doi.org/10.2116/analsci.13.155
[43]
Li, J., Li, J.Z., Zhang, H.Q., Zhang, Y. and Li, J.Q. (2009) Synthesis, Characterization and Crystal Structure of a Ni(II) Complex Derived from Heterocyclic Acylpyrazolone. Journal of Coordination Chemistry, 62, 2465-2471. https://doi.org/10.1080/00958970902842455
[44]
Sheikh, T.U., Khan, M.N., Hussain, G., Athar, M.M., Ashraf, M., Nasim, F.H. and Khan, M.A. (2015) Synthesis and Biological Screening of Heterocyclic Ligands-Pyrazole Derivatives Metal Complexes. Asian Journal of Chemistry, 27, 257-260.
[45]
Al-Amiery, A.A., Al-Majedy, Y.K., Ibrahim, H.H. and Al-Tamimi, A.A. (2012) Antioxidant, Antimicrobial, and Theoretical Studies of the Thiosemicarbazone Derivative Schiff Base 2-(2-Imino-1-Methylimidazolidin-4-Ylidene)Hydrazine carbothioamide (IMHC). Organic and Medicinal Chemistry Letters, 2, 1-7. https://doi.org/10.1186/2191-2858-2-4
[46]
Jesmin, M., Ali, M.M., Salahuddin, M.S., Habib, M.R. and Khanam, J.A. (2008) Antimicrobial Activity of Some Schiff Bases Derived from Benzoin, Salicylaldehyde, Aminophenol and 2,4-Dinitrophenyl Hydrazine. Mycobiology, 36, 70-73. https://doi.org/10.4489/MYCO.2008.36.1.070
[47]
Dharmaraj, N., Viswanathamurthi, P. and Natarajan, K. (2001) Ruthenium(II) Complexes Containing Bidentate Schiff Bases and Their Antifungal Activity. Transition Metal Chemistry, 26, 105-109. https://doi.org/10.1023/A:1007132408648
[48]
Zarenezhad, E. and Esmaielzadeh, S. (2018) Copper(II) Schiff Base Complexes with Catalyst Property: Experimental, Theoretical, Thermodynamic and Biological Studies. Acta Chimica Slovenica, 65, 416-428. https://doi.org/10.17344/acsi.2018.4159
[49]
Chioma, F., Ekennia, A.C., Osowole, A.A., Okafor, S.N., Ibeji, C.U., Onwudiwe, D.C. and Ujam, O.T. (2018) Synthesis, Characterization, in-vitro Antimicrobial Properties, Molecular Docking and DFT Studies of 3-{(E)-[(4,6-Dimethylpyrimidin-2-yl)Imino]Methyl} Naphthalen-2-ol and Heteroleptic Mn(II), Co(II), Ni(II) and Zn(II) Complexes. Open Chemistry, 16, 184-200. https://doi.org/10.1515/chem-2018-0020
[50]
Idemudia, O.G., Sadimenko, A.P., Afolayan, A.J. and Hosten, E.C. (2015) Synthesis and Characterization of Bioactive Acylpyrazolone Sulfanilamides and Their Transition Metal Complexes: Single Crystal Structure of 4-Benzoyl-3-Methyl-1-Phenyl-2-Pyrazolin-5-One Sulfanilamide. Bioinorganic Chemistry and Applications, 2015, 1-14. https://doi.org/10.1155/2015/717089
[51]
Taheri, O., Behzad, M., Ghaffari, A., Kubicki, M., Dutkiewicz, G., Bezaatpour, A. and Salehi, M. (2014) Synthesis, Crystal Structures and Antibacterial Studies of Oxidovanadium(IV) Complexes of Salen-Type Schiff Base Ligands Derived from Meso-1,2-Diphenyl-1,2-Ethylenediamine. Transition Metal Chemistry, 39, 253-259. https://doi.org/10.1007/s11243-014-9798-9