全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钛酸钡晶体中氧空位对光学性质的影响
Effect of Oxygen Vacancy on Optical Properties in Barium Titanate Crystals

DOI: 10.12677/APP.2023.138039, PP. 347-356

Keywords: 氧空位,密度泛函理论,FNV修正,杂化泛函,光谱
Oxygen Vacancies
, Density Functional Theory, FNV Alignment, Hybrid Functional, Optical Spectra

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于密度泛函理论,研究了在BaTiO3晶体中不同电荷态(0, +1, +2)氧空位的缺陷形成能。采用杂化密度泛函修正了DFT-GGA带边问题。使用FNV方法对缺陷形成能量进行修正。给出了包含电子–声子耦合的F中心和F+中心的光谱的比较准确描述。结果表明:氧空位是浅施主能级,是该材料n型导电的主要原因。根据本文的计算结果,F心吸收峰位于2.85 eV (435 nm),F+心吸收峰则位于2.80 eV (443 nm)。F心的发射峰位于2.83 eV (438 nm),F+心的发射峰位于2.78 eV (446 nm)。计算结果与实验结果基本一致。结果表明,这些方法对点缺陷光谱的计算是可行的。该方法的主要优点是计算量比较低,远远低于多体微扰理论GW方法中的计算量。本文的方法在满足计算精度的条件下,解决了计算量巨大的问题。为研究点缺陷的光谱性质提供了有效途径。
In this paper, based on density functional theory, the defect formation energies of oxygen vacancies with different charge states (0, +1, +2) in BaTiO3 crystals were investigated. Hybrid density functional is used to solve the edge of the band problem of DFT-GGA. A finite size correction scheme (FNV) was used to correct the defect formation energy. An accurate description of the spectra of F and F+ centers involving electron-phonon coupling is given. The results show that the oxygen vacancy is a shallow donor level, which is the reason for the n-type conductivity of the material. According to our calculation results, the F core absorption peak is located at 2.85 eV (435 nm), and the F+ core absorption peak is located at 2.80 eV (443 nm). The emission peak of the F center is 2.83 eV (438 nm), and that of the F+ center is 2.78 eV (446 nm). The results are consistent with the experimental results. The results show that these methods are feasible for the calculation of point defect spectra. The main advantage of this method is that the computational cost is much lower than the GW method of multi-body perturbation theory. The method in this paper solves the problem of the huge amount of computation under the condition of satisfying the calculation accuracy. It provides an effective way to study the spectral properties of defects.

References

[1]  Buscaglia, M.T., Buscaglia, V., Viviani, M., Petzelt, J., Savinov, M., Mitoseriu, L., Testino, A., Nanni, P., Harnagea, C., Zhao, Z. and Nygren, M. (2004) Ferroelectric Properties of Dense Nano Crystalline BaTiO3 Ceramics. Nanotechnology, 15, 1113-1117.
https://doi.org/10.1088/0957-4484/15/9/001
[2]  Lacerda, L.H.S. and de Lazaro, S.R. (2016) A Theoretical Investigation of the Zn-Doping Influence on Structural and Electronic Properties of BaTiO3. Solid State Ionics, 297, 36-42.
https://doi.org/10.1016/j.ssi.2016.10.001
[3]  Sato, S., Nakano, Y., Sato, A., et al. (1997) Effect of Y-Doping on Resistance Degradation of Multilayer Ceramic Capacitors with Ni Electrodes under the Highly Ac-celerated Life Test. Japanese Journal of Applied Physics, 36, 6016-6020.
https://doi.org/10.1143/JJAP.36.6016
[4]  Okino, Y., Shizuno, H., Kusumi, S., et al. (1994) Dielectric Prop-erties of Rare-Earth-Oxide-Doped BaTiO3 Ceramics Fired in Reducing Atmosphere. Japanese Journal of Applied Physics, 33, 5393.
https://doi.org/10.1143/JJAP.33.5393
[5]  Solovyev, I., Hamada, N. and Terakura, K. (1996) t2g versus All 3d Localization in LaMO3 Perovskites (M = Ti-Cu): First-Principles Study. Physical Review B Condensed Matter, 53, 7158-7170.
https://doi.org/10.1103/PhysRevB.53.7158
[6]  Kresse, G.G. and Furthmüller, J.J. (1996) Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, Condensed Matter, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169
[7]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1998) General-ized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[8]  Nisar, J., Rhammar, C., Mstorp, E., et al. (2011) Optical Gap and Native Point Defects in Kaolinite Studied by the GGA-PBE, HSE Functional, and GW Approaches. Physical Review B: Condensed Matter, 84, 2250-2262.
https://doi.org/10.1103/PhysRevB.84.075120
[9]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/PhysRevB.13.5188
[10]  Freysoldt, C., Grabowski, B., Hickel, T., et al. (2014) First-Principles Calculations for Point Defects in Solids. Reviews of Modern Physics, 86, 253-305.
https://doi.org/10.1103/RevModPhys.86.253
[11]  Freysoldt, C., Neugebauer, J. and Van De Walle, C.G. (2009) Fully Ab Initio Finite-Size Corrections for Charged-Defect Supercell Calculations. Physical Review Letters, 102, Article ID: 016402.
https://doi.org/10.1103/PhysRevLett.102.016402
[12]  Freysoldt, C., Neugebauer, J. and Van De Walle, C.G. (2011) Electrostatic Interactions between Charged Defects in Supercells. Physica Status Solidi (B), 248, 1067-1076.
https://doi.org/10.1002/pssb.201046289
[13]  Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2006) Hybrid Functionals Based on a Screened Coulomb Potential. The Journal of Chemical Physics, 124, 8207-8215.
https://doi.org/10.1063/1.2204597
[14]  Perdew, J.P., Ernzerhof, M. and Burke, K. (1996) Rationale for Mixing Exact Exchange with Density Functional Approximations. The Journal of Chemical Physics, 105, 9982-9985.
https://doi.org/10.1063/1.472933
[15]  Alkauskas, A. and Pasquarello, A. (2011) Band-Edge Problem in the Theoretical Determination of Defect Energy Levels: The O Vacancy in ZnO as a Benchmark Case. Physical Review B, 84, Article ID: 125206.
https://doi.org/10.1103/PhysRevB.84.125206
[16]  方容川. 固体光谱学[M]. 合肥: 中国科学技术大学出版社, 2001.
[17]  Alkauskas, A., Lyons, J.L., Steiauf, D., et al. (2012) First-Principles Calculations of Luminescence Spectrum Line Shapes for Defects in Semiconductors: The Example of GaN and ZnO. Physical Review Letters, 109, Article ID: 267401.
https://doi.org/10.1103/PhysRevLett.109.267401
[18]  Dreyer, C.E., Alkauskas, A., Lyons, J.L., et al. (2018) First-Principles Calculations of Point Defects for Quantum Technologies. Annual Review of Materials Research, 48, 1-26.
https://doi.org/10.1146/annurev-matsci-070317-124453
[19]  Huang, K. and Rhys, A. (1950) Theory of Light Absorption and Non-Radiative Transitions in F-Centres. Royal Society of London Proceedings, 204, 406-423.
https://doi.org/10.1098/rspa.1950.0184
[20]  Alkauskas, A., Mccluskey, M.D. and Van De Walle, C.G. (2016) Tutorial: Defects in Semiconductors—Combining Experiment and Theory. Journal of Applied Physics, 119, Article ID: 181101.
https://doi.org/10.1063/1.4948245
[21]  Pinto, H., Elliott, S. and Stashans, A. (2003) Theoretical Study of Structural and Optical Properties of F-Centers in Tetragonal BaTiO3. Proceedings of SPIE—The Interna-tional Society for Optical Engineering, Vol. 5122, Moscow, 6-9 August 2003, 1-7.
[22]  Choi, M., Oba, F. and Tanaka, I. (2011) Electronic and Structural Properties of the Oxygen Vacancy in BaTiO3. Applied Physics Letters, 98, Article ID: 172901.
https://doi.org/10.1063/1.3583460
[23]  Megaw, H.D. (1957) Ferroelectricity in Crystals, Methuen & Co. Ltd., London.
[24]  Chandrappa, S., Galbao, S.J., Krishnan, P.S.S.R., et al. (2023) Iridium-Doping as a Strategy to Realize Visible-Light Absorption and p-Type Be-havior in BaTiO3. Journal of Physical Chemistry C, 127, 12383-12393.
https://doi.org/10.1021/acs.jpcc.3c02942
[25]  Ianculescu, A. and Mitoseriu, L. (2010) Chapter 2. Ba(Ti, Zr)O3-Functional Materials: From Nano-Powders to Bulk Ceramics. In: Bartul, Z. and Trenor, J., Eds., Advances in Nanotechnology, Vol. 3, Nova Science Publisher’s, Inc., Hauppauge, 1-99.
[26]  Liu, Y., Wang, X. and Fan, F.T. (2022) Bulk Photovoltage Effect in Ferroelectric BaTiO3. The Journal of Physical Chemistry Letters, 13, 11071-11075.
https://doi.org/10.1021/acs.jpclett.2c03194
[27]  Liu, X. and Tan, X. (2016) Giant Strains in Non-Textured (Bi1/2Na1/2)TiO3-Based Lead-Free Ceramics. Advanced Materials, 28, 574-578.
https://doi.org/10.1002/adma.201503768
[28]  Genenko, Y.A., Glaum, J., Hoffmann, M.J. and Albe, K. (2015) Mechanisms of Aging and Fatigue in Ferroelectrics. Materials Science and Engineering: B, 192, 52-82.
https://doi.org/10.1016/j.mseb.2014.10.003
[29]  Iwazaki, Y., Sakashita, T., Suzuki, T., et al. (2011) First-Principles Calculations of Structural Changes Induced by Oxygen Vacancies in Tetragonal Phase BaTiO3. Key Engineering Materials, 485, 19-22.
https://doi.org/10.4028/www.scientific.net/KEM.485.19
[30]  Fu, D., Hao, S., Li, J. and Qiang, L. (2011) Effects of the Penetration Temperature on Structure and Electrical Conductivity of Samarium Modified BaTiO3 Powders. Journal of Rare Earths, 29, 164-167.
https://doi.org/10.1016/S1002-0721(10)60424-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133