全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

个人隐私数据治理研究:热点、趋势与前沿
Research on Personal Privacy Data Governance: Hot Spots, Trends and Frontiers

DOI: 10.12677/ORF.2023.134308, PP. 3072-3081

Keywords: 个人隐私数据,热点分析,趋势研究,前沿分析,CiteSpace
Personal Privacy Data
, Hot Spot Analysis, Trend Research, Frontier Analysis, CiteSpace

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以Web of Science核心合集数据库2008~2022年发表的1061篇关于个人隐私数据治理研究的文献为研究对象,运用信息可视化软件CiteSpace,主要对文献引文聚类图谱、关键词聚类图谱、时间线图谱及文献共被引突发强度进行分析,揭示个人隐私数据治理研究领域的研究热点、趋势与前沿。分析发现,其研究热点主要聚焦于数据生命周期层面,实际运用层面与具体方法与技术层面,其研究的演化趋势主要分为三个阶段,从研究前沿上看,位置隐私、接触者追踪、自我披露、记录隐私以及在线隐私代表了在个人隐私数据治理研究领域的重要方面。对此,文章给出进一步的总结和思考,以期为个人隐私数据治理领域的深入研究提供参考。
This paper takes 1061 articles on personal privacy data governance published in Web of Science core collection database from 2008 to 2022 as the research object, and uses information visualization software CiteSpace. This paper mainly analyzes the literature citation clustering graph, keyword clustering graph, timeline graph and literature co-citation burst intensity, and reveals the research hotspots, trends and frontiers in the research field of personal privacy data governance. It is found that the research mainly focuses on the data life cycle level, the practical application level and the specific methods and technologies level, and the evolution trend of its research is mainly divided into three stages. From the research frontier, location privacy, contact tracking, self-disclosure, record privacy and online privacy represent important aspects in the research field of personal privacy data governance. In this regard, the paper gives a further summary and reflection, in order to provide a reference for the in-depth research in the field of personal privacy data governance.

References

[1]  刘雅辉, 张铁赢, 靳小龙, 程学旗. 大数据时代的个人隐私保护[J]. 计算机研究与发展, 2015, 52(1): 229-247.
[2]  李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 第2版. 北京: 首都经济贸易大学出版社, 2017.
[3]  Kim, S. and Chung, Y.D. (2017) An Anonymization Protocol for Continuous and Dynamic Priva-cy-Preserving Data Collection. Future Generation Computer Systems, 93, 1065-1073.
[4]  Shanmugarasa, Y., Paik, H., Kanhere, S.S., et al. (2022) Automated Privacy Preferences for Smart Home Data Sharing Using Personal Data Stores. IEEE Security & Privacy, 20, 12-22.
https://doi.org/10.1109/MSEC.2021.3106056
[5]  Sankar, L., Trappe, W., Ramchandran, K., et al. (2013) The Role of Signal Processing in Meeting Privacy Challenges: An Overview. IEEE Signal Processing Magazine, 30, 95-106.
https://doi.org/10.1109/MSP.2013.2264541
[6]  Pallant, J.I., Pallant, J.L., Sands, S.J., Ferraro, C.R. and Afifi, E. (2022) When and How Consumers Are Willing to Exchange Data with Retailers: An Exploratory Segmentation. Journal of Retailing and Consumer Services, 64, Article ID: 102774.
https://doi.org/10.1016/j.jretconser.2021.102774
[7]  Kim, Y.K., Ullah, S., Kwon, K., Jang, Y., Lee, J. and Hong, C.S. (2018) Reinforcement Learning Based Data Self-Destruction Scheme for Secured Data Management. Symmetry, 10, Article No. 136.
https://doi.org/10.3390/sym10050136
[8]  Majeed, A., Khan, S. and Hwang, S.O. (2022) A Comprehensive Analysis of Privacy-Preserving Solutions Developed for Online Social Networks. Electronics, 11, Article No. 1931.
https://doi.org/10.3390/electronics11131931
[9]  Barth, S. and de Jong, M.D.T. (2017) The Privacy Para-dox—Investigating Discrepancies between Expressed Privacy Concerns and Actual Online Behavior—A Systematic Literature Review. Telematics and Informatics, 34, 1038-1058.
https://doi.org/10.1016/j.tele.2017.04.013
[10]  Liyanaarachchi, G. (2021) Managing Privacy Paradox through National Culture: Reshaping Online Retailing Strategy. Journal of Retailing and Consumer Services, 60, Article ID: 102500.
https://doi.org/10.1016/j.jretconser.2021.102500
[11]  Kim, B. and Kim, D. (2020) Understanding the Key Antecedents of Users’ Disclosing Behaviors on Social Networking Sites: The Privacy Paradox. Sustainability, 12, Article No. 5163.
https://doi.org/10.3390/su12125163
[12]  Yin, D. and Yang, Q. (2018) GANs Based Density Distribution Privacy-Preservation on Mobility Data. Security and Communication Networks, 2018, Article ID: 9203076.
https://doi.org/10.1155/2018/9203076
[13]  Ahn, N.Y., Park, J.E., Lee, D.H. and Hong, P.C. (2020) Balancing Personal Privacy and Public Safety during COVID-19: The Case of South Korea. IEEE Access, 8, 171325-171333.
https://doi.org/10.1109/ACCESS.2020.3025971
[14]  Ganta, S.R., Kasiviswanathan, S.P. and Smith, A. (2008) Composition Attacks and Auxiliary Information in Data Privacy. The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, 24-27 August 2008, 265-273.
[15]  Sarwate, A.D. and Chaudhuri, K. (2013) Signal Processing and Machine Learning with Differential Privacy: Algorithms and Challenges for Continuous Data. IEEE Signal Processing Magazine, 30, 86-94.
https://doi.org/10.1109/MSP.2013.2259911
[16]  Gionis, A. and Tassa, T. (2009) k-Anonymization with Minimal Loss of Information. IEEE Transactions on Knowledge and Data Engineering, 21, 206-219.
https://doi.org/10.1109/TKDE.2008.129
[17]  Kim, J., Park, C., Hwang, J. and Kim, H.-J. (2013) Privacy Level Indicating Data Leakage Prevention System. KSII Transactions on Internet and Information Systems (TIIS), 7, 558-575.
https://doi.org/10.3837/tiis.2013.03.009
[18]  Motahari, S., Ziavras, S.G. and Jones, Q. (2010) Online Anonymity Protection in Computer-Mediated Communication. IEEE Transactions on Information Forensics and Security, 5, 570-580.
https://doi.org/10.1109/TIFS.2010.2051261
[19]  Koo, D., Shin, Y. and Hur, J. (2017) Privacy-Preserving Aggregation and Authentication of Multi-Source Smart Meters in a Smart Grid System. Applied Sciences, 7, Article No. 1007.
https://doi.org/10.3390/app7101007
[20]  Büchi, M., Just, N. and Latzer, M. (2016) Caring Is Not Enough: The Importance of Internet Skills for Online Privacy Protection. Information, Com-munication & Society, 20, 1261-1278.
https://doi.org/10.1080/1369118X.2016.1229001
[21]  Yasaka, T.M., Lehrich, B.M. and Sahyouni, R. (2020) Peer-to-Peer Contact Tracing: Development of a Privacy-Preserving Smartphone App. JMIR mHealth and uHealth, 8, e18936.
https://doi.org/10.2196/18936
[22]  Idrees, S.M., Nowostawski, M. and Jameel, R. (2021) Blockchain-Based Digital Contact Tracing Apps for COVID-19 Pandemic Management: Issues, Challenges, Solutions, and Future Directions. JMIR Medical Informatics, 9, e25245.
https://doi.org/10.2196/25245
[23]  金元浦. 大数据时代个人隐私数据泄露的调研与分析报告[J]. 清华大学学报(哲学社会科学版), 2021, 36(1): 191-201+206.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133