|
合成磁共振及扩散张量成像在脑神经胶质肿瘤分级中的研究进展
|
Abstract:
脑胶质瘤是较为常见的中枢神经系统肿瘤,表现为向外浸润性生长,具有侵袭性且容易复发,目前手术切除仍是该病的主要治疗手段,脑胶质瘤的早期诊断及分级对治疗方案的制定及预后具有重要意义。MRI因具有多平面、多序列、高分辨率等特点,对肿瘤疾病评估具有重要价值,随着影像技术的发展,磁共振成像技术在脑胶质瘤的分级诊断中发挥着越来越重要的作用,肿瘤影像的定量评价逐渐成为研究热点。本文就目前合成磁共振成像的定量参数及扩散张量成像在胶质瘤分级中的研究进展进行较全面的阐述。
Glioma is a common central nervous system tumor, which is characterized by outward invasive growth, invasion and easy recurrence. At present, surgical resection is still the main treatment of the disease, and the early diagnosis and grading of glioma are of great significance to the formula-tion and prognosis of the treatment plan. MRI, with multiple plane, multiple sequence and high resolution, has important value for tumor disease evaluation. With the development of imaging technology, magnetic resonance imaging technology is playing an increasingly important role in the graded diagnosis of glioma, and the quantitative evaluation of tumor imaging has gradually become a research hotspot. In this paper, the current research progress of quantitative parameters of syn-thetic magnetic resonance imaging and diffusion tensor imaging in glioma grading was comprehen-sively described.
[1] | Xu, S., Tang, L., Li, X., Fan, F. and Liu, Z. (2020) Immunotherapy for Glioma: Current Management and Future Appli-cation. Cancer Letters, 476, 1-12. https://doi.org/10.1016/j.canlet.2020.02.002 |
[2] | Ostrom, Q.T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J., Wolinsky, Y., Kruchko, C. and Barnholtz-Sloan, J. (2014) CBTRUS Statis-tical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neu-ro-Oncology, 4, iv1-iv63. https://doi.org/10.1093/neuonc/nou223 |
[3] | 国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版) [J]. 中华神经外科杂志, 2022, 38(8): 757-777. |
[4] | Bai, J., Varghese, J. and Jain, R. (2020) Adult Glioma WHO Classification Up-date, Genomics, and Imaging: What the Radiologists Need to Know. Topics in Magnetic Resonance Imaging, 29, 71-82.
https://doi.org/10.1097/RMR.0000000000000234 |
[5] | Bai, Y., Lin, Y., Tian, J., Shi, D., Cheng, J., Haacke, E.M., Hong, X., Ma, B., Zhou, J. and Wang, M. (2016) Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-Weighted MR Imaging and Diffusion Kurtosis MR Imaging. Radiology, 278, 496-504. https://doi.org/10.1148/radiol.2015142173 |
[6] | Kumar, N.M., Fritz, B., Stern, S.E., Warntjes, J.B.M., Lisa Chuah, Y.M. and Fritz, J. (2018) Synthetic MRI of the Knee: Phantom Validation and Comparison with Conventional MRI. Ra-diology, 289, 465-477.
https://doi.org/10.1148/radiol.2018173007 |
[7] | McGarry, B.L., Jokivarsi, K.T., Knight, M.J., Grohn, O.H.J. and Kauppinen, R.A. (2017) Magnetic Resonance Imaging Protocol for Stroke Onset Time Estimation in Permanent Cerebral Ischemia. Journal of Visualized Experiments, 2017, e55277. https://doi.org/10.3791/55277 |
[8] | Seiler, A., Lauer, A., Deichmann, R., N?th, U., You, S.J., Pfeilschifter, W., Singer, O.C., Pilatus, U. and Wagner, M. (2019) Complete Restitution of the Ischemic Penumbra after Successful Thrombectomy: A Pilot Study Using Quantitative MRI. Clinical Neuroradiology, 29, 415-423. https://doi.org/10.1007/s00062-018-0675-3 |
[9] | Sanoussi, S., Comet, C., Kaefer, K., Attou, R., De Bels, D., Gazagnes, M.D., Honoré, P.M. and Redant, S. (2019) Can Magnetic Resonance Imaging Make the Differential Diagnosis between Cerebral Ischemia and Epilepsy? Journal of Translational Internal Medicine, 7, 123-125. https://doi.org/10.2478/jtim-2019-0025 |
[10] | Ji, S., Yang, D., Lee, J., Choi, S.H., Kim, H. and Kang, K.M. (2022) Synthetic MRI: Technologies and Applications in Neuroradiology. Journal of Magnetic Resonance Imaging, 55, 1013-1025. https://doi.org/10.1002/jmri.27440 |
[11] | Moya-Sáez, E., Navarro-González, R., Cepeda, S., Pé-rez-Nú?ez, á., de Luis-García, R., Aja-Fernández, S. and Alberola-López, C. (2022) Synthetic MRI Improves Radi-omics-Based Glioblastoma Survival Prediction. NMR in Biomedicine, 35, e4754. https://doi.org/10.1002/nbm.4754 |
[12] | 高微波, 杨全新, 陈欣, 等. 合成MRI对乳腺良恶性病变鉴别诊断的价值[J]. 中华放射学杂志, 2021, 32(8): 45-49. |
[13] | 刘辉明, 尹国平, 别非, 等. 对比集合序列与常规序列头部MR图像质量[J]. 中国医学影像技术, 2019, 35(2): 268-271. |
[14] | Hagiwara, A., Hori, M., Yokoyama, K., Takemura, M.Y. andica, C., Tabata, T., Kamagata, K., Suzuki, M., Kumamaru, K.K., Nakazawa, M., Takano, N., Kawasaki, H., Hamasaki, N., Kunimatsu, A. and Aoki, S. (2017) Synthetic MRI in the Detection of Multiple Sclerosis Plaques. AJNR American Journal of Neuroradiology, 38, 257-263.
https://doi.org/10.3174/ajnr.A5012 |
[15] | Ryu, K.H., Baek, H.J., Moon, J.I., Choi, B.H., Park, S.E., Ha, J.Y., Jeon, K.N., Bae, K., Choi, D.S., Cho, S.B., Lee, Y. and Heo, Y.J. (2020) Initial Clinical Experience of Synthetic MRI as a Routine Neuroimaging Protocol in Daily Practice: A Single-Center Study. Journal of Neuroradiology, 47, 151-160. https://doi.org/10.1016/j.neurad.2019.03.002 |
[16] | Hattingen, E., Jurcoane, A., Daneshvar, K., Pilatus, U., Mit-telbronn, M., Steinbach, J.P. and B?hr, O. (2013) Quantitative T2 Mapping of Recurrent Glioblastoma under Bevaci-zumab Improves Monitoring for Non-Enhancing Tumor Progression and Predicts Overall Survival. Neuro-Oncology, 15, 1395-1404. https://doi.org/10.1093/neuonc/not105 |
[17] | Lescher, S., Jurcoane, A., Veit, A., B?hr, O., Deichmann, R. and Hattingen, E. (2015) Quantitative T1 and T2 Mapping in Recurrent Glioblastomas under Bevacizumab: Earlier Detection of Tumor Progression Compared to Conventional MRI. Neuroradiology, 57, 11-20. https://doi.org/10.1007/s00234-014-1445-9 |
[18] | Ellingson, B.M., Cloughesy, T.F., Lai, A., Nghiemphu, P.L., Lalezari, S., Zaw, T., Motevalibashinaeini, K., Mischel, P.S. and Pope, W.B. (2012) Quantification of Edema Reduction Using Differential Quantitative T2 (DQT2) Relaxometry Mapping in Recurrent Glioblastoma Treated with Bevacizumab. Journal of Neuro-Oncology, 106, 111-119.
https://doi.org/10.1007/s11060-011-0638-x |
[19] | Min, Z.G., Shan, H.R., Xu, L., Yuan, D.H., Sheng, X.X., Xie, W.C., Zhang, M., Niu, C., Shakir, T.M. and Cao, Z.H. (2021) Diffusion Tensor Imaging Revealed Different Pathological Processes of White Matter Hyperintensities. BMC Neurology, 21, Article No. 128. https://doi.org/10.1186/s12883-021-02140-9 |
[20] | Alkanhal, H., Das, K., Rathi, N., Syed, K. and Poptani, H. (2021) Differentiating Nonenhancing Grade II Gliomas from Grade III Gliomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI. World Neurosurgery, 146, e555-e564. https://doi.org/10.1016/j.wneu.2020.10.144 |
[21] | Li, Y. and Zhang, W. (2020) Quantitative Evaluation of Diffusion Tensor Imaging for Clinical Management of Glioma. Neurosurgical Review, 43, 881-891. https://doi.org/10.1007/s10143-018-1050-1 |
[22] | Concha, L. (2014) A Macroscopic View of Microstructure: Using Diffusion-Weighted Images to Infer Damage, Repair, and Plasticity of White Matter. Neuroscience, 276, 14-28. https://doi.org/10.1016/j.neuroscience.2013.09.004 |
[23] | De Belder, F.E., Oot, A.R., Van Hecke, W., et al. (2012) Diffusion Tensor Imaging Provides an Insight into the Microstructure of Meningiomas, High-Grade Gliomas, and Peri-tumoral Edema. Journal of Computer Assisted Tomography, 36, 577-582. https://doi.org/10.1097/RCT.0b013e318261e913 |
[24] | Wang, S., Kim, S.J., Poptani, H., Woo, J.H., Mohan, S., Jin, R., Voluck, M.R., O’Rourke, D.M., Wolf, R.L., Melhem, E.R. and Kim, S. (2014) Diagnostic Utility of Diffusion Ten-sor Imaging in Differentiating Glioblastomas from Brain Metastases. AJNR American Journal of Neuroradiology, 35, 928-934. https://doi.org/10.3174/ajnr.A3871 |
[25] | Jolapara, M., Patro, S.N., Kesavadas, C., Saini, J., Thomas, B., Gupta, A.K., Bodhey, N. and Radhakrishnan, V.V. (2011) Can Diffusion Tensor Metrics Help in Preoperative Grading of Diffusely Infiltrating Astrocytomas? A Retrospective Study of 36 Cases. Neuroradiology, 53, 63-68. https://doi.org/10.1007/s00234-010-0761-y |
[26] | Fudaba, H., Shimomura, T., Abe, T., Matsuta, H., Momii, Y., Sugita, K., et al. (2014) Comparison of Multiple Parameters Obtained on 3T Pulsed Arterial Spin-Labeling, Diffusion Tensor Imaging, and MRS and the Ki-67 Labeling Index in Evaluating Glioma Grading. AJNR American Journal of Neuroradiology, 35, 2091-2098.
https://doi.org/10.3174/ajnr.A4018 |
[27] | Stadlbauer, A., Ganslandt, O., Buslei, R., Hammen, T., Gruber, S., Moser, E., Buchfelder, M., Salomonowitz, E. and Nimsky, C. (2006) Gliomas: Histopathologic Evaluation of Changes in Direc-tionality and Magnitude of Water Diffusion at Diffusion-Tensor MR Imaging. Radiology, 240, 803-810. https://doi.org/10.1148/radiol.2403050937 |
[28] | Jakab, A., Molnár, P., Emri, M. and Berényi, E. (2011) Glioma Grade Assessment by Using Histogram Analysis of Diffusion Tensor Imaging-Derived Maps. Neuroradiology, 53, 483-491. https://doi.org/10.1007/s00234-010-0769-3 |