|
贝伐珠单抗治疗脑胶质瘤的研究进展
|
Abstract:
脑胶质瘤是成人最常见的原发性脑肿瘤,也是肿瘤中预后最差的肿瘤之一。目前的常规治疗方法以手术切除为主,术后放疗联合替莫唑胺(temozolomide, TMZ)同步并辅助TMZ化疗。虽然近年来脑胶质瘤的治疗方法在电场疗法、免疫治疗、靶向治疗、硼中子俘获治疗等疗法都有了新的突破,但是患者的生存期对比于其他肿瘤还是处于较低水平。2009年贝伐珠单抗(bevacizumab, Bev)在美国被批准用于复发性胶质母细胞瘤(GBM),这给患者提供了一个新的选择。本文将总结Bev治疗脑胶质瘤的研究进展以及其应用中存在的一些问题。
Glioma is the most common primary brain tumor in adults and one of the tumors with the worst prognosis. Current conventional treatment is mainly surgical resection, with postoperative radio-therapy combined with temozolomide (TMZ) synchronized and adjuvant TMZ chemotherapy. Alt-hough the treatment methods of glioma have made new breakthroughs in electric field therapy, immunotherapy, targeted therapy, boron neutron capture therapy and other therapies in recent years, the survival time of patients is still at a low level compared with other tumors. Bevacizumab (BEV) was approved in the United States in 2009 for recurrent glioblastoma (GBM), which gave pa-tients a new option. This article will summarize the research progress of Bev in the treatment of glioma and some problems in its application.
[1] | 国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版) [J]. 中华神经外科杂志, 2022, 38(8): 757-777. |
[2] | Laws, E.R., et al. (2003) Survival Following Surgery and Prognostic Factors for Recently Diagnosed Malignant Glioma: Data from the Glioma Outcomes Project. Journal of Neurosurgery, 99, 467-473.
https://doi.org/10.3171/jns.2003.99.3.0467 |
[3] | Bala?a, C., Capellades, J., Teixidor, P., et al. (2007) Clinical Course of High-Grade Glioma Patients with a “Biopsy-Only” Surgical Approach: A Need for Individualised Treatment. Clinical and Translational Oncology, 9, 797-803.
https://doi.org/10.1007/s12094-007-0142-0 |
[4] | Stupp, R., Mason, W.P., Van den Bent, M.J., et al. (2005) Radi-otherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352, 987-996. https://doi.org/10.1056/NEJMoa043330 |
[5] | Baluk, P., Hashizume, H. and McDonald, D.M. (2005) Cellular Abnormalities of Blood Vessels as Targets in Cancer. Current Opinion in Genetics & Development, 15, Article ID: 102111. https://doi.org/10.1016/j.gde.2004.12.005 |
[6] | Ferrara, N., Hillan, K., Gerber, H.-P. and Novotny, W. (2004) Discovery and Development of Bevacizumab, an Anti-VEGF Antibody for Treating Cancer. Nature Reviews Drug Discovery, 3, 391-400.
https://doi.org/10.1038/nrd1381 |
[7] | Kim, K., Li, B., Winer, J., et al. (1993) Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumour Growth in Vivo. Nature, 362, 841-844. https://doi.org/10.1038/362841a0 |
[8] | 王海兰, 詹正宇, 冯苗, 钟陆行. 贝伐单抗治疗高级别脑胶质瘤的研究进展[J]. 中国肿瘤临床, 2013, 40(16): 1001-1004. |
[9] | Klement, G., et al. (2000) Continuous Low-Dose Therapy with Vinblastine and Vegf Receptor-2 Antibody Induces Sustained Tumor Regression without Overt Toxicity. Journal of Clinical Investigation, 105, R15-R24.
https://doi.org/10.1172/JCI8829 |
[10] | Jain, R.K. (2001) Normalizing Tumor Vasculature with Anti-Angiogenic Therapy: A New Paradigm for Combination Therapy. Nature Medicine, 7, 987-989. https://doi.org/10.1038/nm0901-987 |
[11] | Zhuang, H., Shi, S., Yuan, Z. and Chang, J.Y. (2019) Bevacizumab Treatment for Radiation Brain Necrosis: Mechanism, Efficacy and Issues. Molecular Cancer, 18, Article No. 21. https://doi.org/10.1186/s12943-019-0950-1 |
[12] | Narita, Y. (2015) Bevacizumab for Glioblastoma. Therapeutics and Clinical Risk Management, 11, 1759-1765.
https://doi.org/10.2147/TCRM.S58289 |
[13] | Chinot, O.L., Nishikawa, R., Mason, W., Henriksson, R., Saran, F., Cloughesy, T., Garcia, J., Revil, C., Abrey, L. and Wick, W. (2016) Upfront Bevacizumab May Extend Survival for Glioblastoma Patients Who Do Not Receive Second-Line Therapy: An Exploratory Analysis of AVAglio. Neu-ro-Oncology, 18, 1313-1318.
https://doi.org/10.1093/neuonc/now046 |
[14] | Yang, S.-B., Gao, K.-D., Jiang, T., Cheng, S.-J. and Li, W.-B. (2017) Bevacizumab Combined with Chemotherapy for Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. On-cotarget, 8, 57337-57344.
https://doi.org/10.18632/oncotarget.16924 |
[15] | 牛牛, 李宝兰, 刘朝阳, 等. 重组人血管内皮抑制素联合贝伐珠单抗体内抑瘤作用的效果及分析[J]. 中国肺癌杂志, 2013, 16(2): 61-66. |
[16] | Taal, W., Oosterkamp, H.M., Wal-enkamp, A.M., Dubbink, H.J., Beerepoot, L.V., Hanse, M.C., Buter, J., Honkoop, A.H., Boerman, D., de Vos, F.Y., et al. (2014) Single-Agent Bevacizumab or Lomustine Versus a Combination of Bevacizumab plus Lomustine in Patients with Recurrent Glioblastoma (BELOB Trial): A Randomised Controlled Phase 2 Trial. The Lancet Oncology, 15, 943-953. https://doi.org/10.1016/S1470-2045(14)70314-6 |
[17] | Friedman, H.S., Prados, M.D., Wen, P.Y., et al. (2009) Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. Journal of Clinical Oncology, 27, 4733-4740. https://doi.org/10.1200/JCO.2008.19.8721 |
[18] | Torcuator, R., Zuniga, R., Mohan, Y.S., et al (2009) Initial Experience with Bevacizumab Treatment for Biopsy Confirmed Cerebral Radiation Necrosis. Journal of Neu-ro-Oncology, 94, 63-68.
https://doi.org/10.1007/s11060-009-9801-z |
[19] | Jain, R.K. (2005) Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. Science, 307, 58-62. https://doi.org/10.1126/science.1104819 |
[20] | Chinot, O.L., Wick, W., Mason, W., et al (2014) Bevacizumab plus Radiotherapy-Temozolomide for Newly Diagnosed Glioblastoma. New England Journal of Medicine, 370, 709-722. https://doi.org/10.1056/NEJMoa1308345 |
[21] | Blumenthal, D.T., Mendel, L. and Bokstein, F. (2016) The Optimal Regimen of Bevacizumab for Recurrent Glioblastoma: Does Dose Matter? Journal of Neuro-Oncology, 127, 493-502. https://doi.org/10.1007/s11060-015-2025-5 |
[22] | Weathers, S.-P., Han, X., Liu, D.D., Conrad, C.A., Gilbert, M.R., Loghin, M.E., O’Brien, B.J., Penas-Prado, M., Puduvalli, V.K., Tremont-Lukats, I., et al. (2016) A Randomized Phase II Trial of Standard Dose Bevacizumab versus Low Dose Bevacizumab plus Lomustine (CCNU) in Adults with Recurrent Glioblastoma. Journal of Neuro-Oncology, 129, 487-494.
https://doi.org/10.1007/s11060-016-2195-9 |
[23] | Ajlan, A., Thomas, P., Albakr, A., Nagpal, S. and Recht, L. (2017) Optimizing Bevacizumab Dosing in Glioblastoma: Less Is More. Journal of Neuro-Oncology, 135, 99-105. https://doi.org/10.1007/s11060-017-2553-2 |
[24] | García-Romero, N., et al. (2020) Bevacizumab Dose Adjustment to Improve Clinical Outcomes of Glioblastoma. BMC Medicine, 18, Article No. 142. https://doi.org/10.1186/s12916-020-01610-0 |
[25] | Bag, A.K., Kim, H., Gao, Y., Bolding, M., Warren, P.P., Fath-allah-Shaykh, H.M., Gurler, D., Markert, J.M., Fiveash, J., Beasley, T.M., et al. (2015) Prolonged Treatment with Bevacizumab Is Associated with Brain Atrophy: A Pilot Study in Patients with High-Grade Gliomas. Journal of Neu-ro-Oncology, 122, 585-593.
https://doi.org/10.1007/s11060-015-1751-z |
[26] | Zhu, X.L., Wu, S.H., Dahut, W.L. and Parikh, C.R. (2007) Risks of Proteinuria and Hypertension with Bevacizumab, an Antibody against Vascular Endothelial Growth Factor: Systematic Review and Meta-Analysis. American Journal of Kidney Diseases, 49, 186-193. https://doi.org/10.1053/j.ajkd.2006.11.039 |
[27] | Rana, P., Pritchard, K.I. and Kerbel, R. (2017) Plasma Vascular Endothelial Growth Factor as a Predictive Biomarker: Door Closed? European Journal of Cancer, 70, 143-145. https://doi.org/10.1016/j.ejca.2016.11.002 |
[28] | Mair, M.J., Pajenda, S., Ilhan-Mutlu, A., et al. (2020) Soluble PD-L1 Is Associated with Local and Systemic Inflammation Markers in Primary and Secondary Brain Tumours. ESMO Open, 5, E000863.
https://doi.org/10.1136/esmoopen-2020-000863 |
[29] | Ellingson, B.M., Sahebjam, S., Kim, H.J., Pope, W.B., Harris, R.J., Woodworth, D.C., et al. (2014) Pretreatment ADC Histogram Analysis Is a Predictive Imaging Biomarker for Bevacizumab Treatment but Not Chemotherapy in Recurrent Glioblastoma. American Journal of Neuroradiology, 35, 673-679. https://doi.org/10.3174/ajnr.A3748 |
[30] | Wirsching, H.G., Roelcke, U., Weller, J., et al. (2021) MRI and 18FET-PET Predict Survival Benefit from Bevacizumab Plus Radiotherapy in Patients with Isocitrate Dehydrogenase Wild-Type Glioblastoma: Results from the Randomized ARTE Trial. Clinical Cancer Research, 27, 179-188. https://doi.org/10.1158/1078-0432.CCR-20-2096 |
[31] | Quillien, V., et al. (2019) Absolute Numbers of Regulatory T Cells and Neutrophils in Corticosteroid-Free Patients Are Predictive for Response to Bevacizumab in Recurrent Glio-blastoma Patients. Cancer Immunology, Immunotherapy, 19, 871-882. https://doi.org/10.1007/s00262-019-02317-9 |
[32] | Mancuso, M.R., Davis, R., Norberg, S.M., et al. (2006) Rapid Vascular Regrowth in Tumors after Reversal of VEGF Inhibition. Journal of Clinical Investigation, 116, 2610-2621. https://doi.org/10.1172/JCI24612 |
[33] | Barlesi, F., Scherpereel, A., Rittmeyer, A., et al. (2013) Randomized Phase III Trial of Maintenance Bevacizumab with or without Pemetrexed after First-Line Induction with Bevacizumab, Cisplatin, and Pemetrexed in Advanced Nonsquamous Non-Small-Cell Lung Cancer: AVAPERL (MO22089). Journal of Clinical Oncology, 31, 3004-3011.
https://doi.org/10.1200/JCO.2012.42.3749 |