全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于高斯过程回归的软件可靠性模型
A Software Reliability Model Based on Gaussian Process Regression

DOI: 10.12677/ORF.2023.134284, PP. 2840-2849

Keywords: 软件可靠性模型,高斯过程回归,非参数模型,机器学习
Software Reliability Model
, Gaussian Process Regression, Nonparametric Model, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统软件可靠性模型通常过于依赖假设条件,难以适应复杂的实际情况。为此,本文提出了一种基于高斯过程回归(Gaussian Process Regression, GPR)的软件可靠性非参数模型。该模型结合了机器学习和高斯过程核,从失效数据中提取样本特征之间的相关关系。与传统可靠性模型相比,本文提出的模型具有更广泛的应用效果。通过对两组真实数据进行对比分析,结果显示本文提出的可靠性模型具有更好的拟合效果和预测能力。
Traditional software reliability models often rely too much on assumptions and are difficult to adapt to complex practical situations. Therefore, this paper proposes a nonparametric model of software reliability based on Gaussian Process Regression (GPR). The model combines machine learning and Gaussian process kernels to extract correlations between sample features from failed data. Compared with the traditional reliability model, the model proposed in this paper has a wider application effect. Through the comparative analysis of the two sets of real data, the results show that the reliability model proposed in this paper has better fitting effect and prediction ability.

References

[1]  陈静, 杨剑锋, 王喜宾, 等. NHPP类开源软件可靠性增长模型的极大似然估计[J]. 广西大学学报(自然科学版), 2022, 47(1): 174-184.
[2]  Jelinski, Z. and Moranda, P. (1972) Software Reliability Research. In: Freiberger, W., Ed., Statistical Computer Performance Evaluation, Academic Press, Cambridge, 465-484.
https://doi.org/10.1016/B978-0-12-266950-7.50028-1
[3]  Zhang, X. and Pham, H. (2000) An Analysis of Factors Affecting Software Reliability. Journal of Systems and Software, 50, 43-56.
https://doi.org/10.1016/S0164-1212(99)00075-8
[4]  Jeske, D.R. and Pham, H. (2001) On the Maximum Likelihood Estimates for the Goel-Okumoto Software Reliability Model. The American Statistician, 55, 219-222.
https://doi.org/10.1198/000313001317098211
[5]  Lavanya, G., Neeraja, K., Basha, S.A., et al. (2017) Pa-rameter Estimation of Goel-Okumoto Model by Comparing ACO with MLE Method. International Research Journal of Engineering and Technology, 4, 1605-1615.
[6]  Lee, T.-Q., Fang, C.-C. and Yeh, C.-W. (2013) Confidence Interval Estimation of Software Reliability Growth Models Based on Ohba’s Inflection S-Shaped Model. Journal of Industrial and Intelligent Information, 1, 196-200.
https://doi.org/10.12720/jiii.1.4.196-200
[7]  Erto, P., Giorgio, M. and Lepore, A. (2020) The Generalized Inflection S-Shaped Software Reliability Growth Model. IEEE Transactions on Reliability, 69, 228-244.
https://doi.org/10.1109/TR.2018.2869466
[8]  Sagar, B.B., Saket, R.K. and Gurmit, S.C. (2016) Exponenti-ated Weibull Distribution Approach Based Inflection S-Shaped Software Reliability Growth Model. Ain Shams Engineering Journal, 7, 973-991.
https://doi.org/10.1016/j.asej.2015.05.009
[9]  Pradhan, V., Kumar, A. and Dhar, J. (2022) Enhanced Growth Model of Software Reliability with Generalized Inflection S-Shaped Testing-Effort Function. Journal of Interdis-ciplinary Mathematics, 25, 137-153.
https://doi.org/10.1080/09720502.2021.2006329
[10]  Wang, J. and Zhang, C. (2022) Reliability Model of Open Source Software Considering Fault Introduction with Generalized Inflection S-Shaped Distribution. SN Applied Sciences, 4, Article No. 244.
https://doi.org/10.1007/s42452-022-05125-6
[11]  Shrivastava, A.K. and Sharma, R. (2022) Developing a Hybrid Software Reliability Growth Model. International Journal of Quality & Reliability Management, 39, 1209-1225.
https://doi.org/10.1108/IJQRM-02-2021-0039
[12]  Yang, J., Zhao, M. and Chen, J. (2022) ELS Algorithm for Estimating Open Source Software Reliability with Masked Data Considering both Fault Detection and Correction Processes. Communications in Statistics-Theory and Methods, 51, 6792-6817.
https://doi.org/10.1080/03610926.2020.1866610
[13]  Bai, C.-G. (2005) Bayesian Network Based Software Reliability Prediction with an Operational Profile. Journal of Systems and Software, 77, 103-112.
https://doi.org/10.1016/j.jss.2004.11.034
[14]  Ruggeri, F., Soyer, R. and Imati, C. (2008) Advances in Bayesian Software Reliability Modelling. In: Bedford, T., et al., Eds., Advances in Mathematical Modelling for Re-liability, IOS Press, Amsterdam, 149-157.
[15]  Wiper, M.P., Palacios, A.P. and Marin, J.M. (2012) Bayesian Software Reliability Prediction Using Software Metrics Information. Quality Technology & Quantitative Manage-ment, 9, 35-44.
https://doi.org/10.1080/16843703.2012.11673276
[16]  Aktekin, T. and Caglar, T. (2013) Imperfect Debug-ging in Software Reliability: A Bayesian Approach. European Journal of Operational Research, 227, 112-121.
https://doi.org/10.1016/j.ejor.2012.11.056
[17]  Jaiswal, A. and Malhotra, R. (2018) Software Reliability Pre-diction Using Machine Learning Techniques. International Journal of System Assurance Engineering and Man-agement, 9, 230-244.
https://doi.org/10.1007/s13198-016-0543-y
[18]  Habtemariam, G.M., Mohapatra, S.K., Seid, H.W., et al. (2022) A Systematic Literature Review of Predicting Software Reliability Using Machine Learning Techniques. In: Khari, M., Mishra, D.B., Acharya, B. and Crespo, R.G., Eds., Optimization of Automated Software Testing Using Meta-Heuristic Techniques, Springer, Berlin, 77-90.
https://doi.org/10.1007/978-3-031-07297-0_6
[19]  Mohanty, R., Ravi, V. and Patra, M.R. (2010) Application of Machine Learning Techniques to Predict Software Reliability. International Journal of Applied Evolutionary Computation (IJAEC), 1, 70-86.
https://doi.org/10.4018/jaec.2010070104

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133