|
模糊赋范线性空间的1-范数——模糊1-范数
|
Abstract:
本文的主要内容是基于T. Bag和S. K. Samanta于2003年建立的模糊赋范线性空间;我们根据 -范数是上升集簇的性质,选取确界逼近的方式,定义了1-范数的概念,并研究其连续性、收敛性等相关性质。
The main content of this paper is based on the fuzzy normed linear space established by T. Bag and S. K. Samanta in 2003; Based on the property that -norm is an ascending cluster, we select the way of approximation to define the concept of 1-norm, study continuity, convergence and its related properties.
[1] | Bag, T. and Samanta, S.K. (2003) Finite Dimensional Fuzzy Normed Linear Spaces. The Journal of Fuzzy Mathematics, 11, 687-705. |
[2] | Bag, T. and Samanta, S.K. (2005) Fuzzy Bounded Linear Operators. Fuzzy Sets and Systems, 151, 513-547.
https://doi.org/10.1016/j.fss.2004.05.004 |
[3] | Sadeqi, I. and Solaty Kia, F. (2009) Fuzzy Normed Linear Space and Its Topological Structure. Chaos, Solitons and Fractals, 40, 2576-2589. https://doi.org/10.1016/j.chaos.2007.10.051 |
[4] | Sadeqi, I. and Solaty Kia, F. (2009) Some Fixed Point Theorems in Fuzzy Reflexive Banaach Spaces. Chaos, Solitons and Fractals, 41, 2606-2612. https://doi.org/10.1016/j.chaos.2008.09.050 |
[5] | Ji, P., Qi, W.Q. and Wei, R.H. (2014) Completeness of Fuzzy Normed Linear Space of All Weakly Fuzzy Bounded Linear Operators. Fuzzy Sets and Systems, 251, 94-100. https://doi.org/10.1016/j.fss.2013.11.003 |
[6] | N?d?ban, S. (2015) Fuzzy Continuous Mappings in Fuzzy Normed Linear Spaces. Special Issue on Fuzzy Sets and Applications, 10, 834-842. https://doi.org/10.15837/ijccc.2015.6.2074 |