|
四种水深反演算法的比较与分析
|
Abstract:
在近海岸海洋研究和开发中,近海岸水深数据至关重要。目前,快速测量水深的模型中,多光谱卫星测量水深的发展非常迅猛。在实际水深反演中,单波段反演模型、双波段(比值对数)反演模型、和多波段水深反演模型以及对数比值模型被广泛应用。然而却很少有人针对这些模型进行对比分析,研究模型的差别。本文以广西涠洲岛的Landsat8 Oil数据和多波束水深数据为基础,对Landsat8 Oil数据进行水陆分离、大气校正等预处理,对多波束水深数据进行抽希和剔除误差点等处理,然后分别用单波段、双波段(比值对数)和多波段以及对数比值模型反演水深,最后利用反演结果、反演残差、任意剖面和散点图进行分析。结果表明,对数比值和双波段(比值对数)模型在涠洲岛浅海地区反演水深效果较好。
During the research and development of near the coastal marine, the depth of the coastal water depth data is very important. At present, in the rapid measurement of water depth, multi-spectrum satellite measures the development of water depth very rapid. In the actual water depth of the water depth, the single-wave segment counter and model, the dual-band (ratio value pair) anti-inverter model, the multi-band water depth anti-inventory model, and the number ratio model are widely used. However, few people compare and analyze these models to study the differences in models. Based on the Landsat8 Oil data and multi-wave waters of Guangxi Landzhou Island, this article conducts preparations such as Landsat8 Oil data separation and atmospheric correction. Single-wave bands, dual-bands (ratio pairs) and multi-bands, and counter-value model anti-deeper depth, finally use anti-discrimination results, anti-discovery residues, arbitrary section and scatter dot diagrams for analysis. The results show that the ratio of the ratio and the double band (ratio value pair) model is better to reflect the water depth in the shallow sea area of the Island.
[1] | Polcyn, F.C. (1973) Calculations of Water Depth from ERTS-MSS Data. |
[2] | Polcyn, F.C. and Sattinger, I.J. (1969) Water Depth Determinations Using Remote Sensing Techniques. Remote Sensing of Environment, Vol. 6, 1017. |
[3] | Spitzer, D. and Dirks, R.W.J. (1987) Bottom Influence on the Reflectance of the Sea. International Journal of Remote Sensing, 8, 279-308. https://doi.org/10.1080/01431168708948642 |
[4] | Lyzenga, D.R. (1978) Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Applied Optics, 17, 379-383. https://doi.org/10.1364/AO.17.000379 |
[5] | Lyzenga, D. (1981) Remote Sensing of Bottom Reflectance and Water Attenuation Parameters in Shallow Water Using Aircraft and Landsat Data. International Journal of Remote Sensing, 2, 71-82.
https://doi.org/10.1080/01431168108948342 |
[6] | Lyzenga, D.R. (1979) Shallow Water Reflectance Modeling with Applications to Remote Sensing of the Ocean Floor. |
[7] | Benny, A.H. and Dawson, G.J. (1983) Satellite Imagery as an Aid to Bathymetric Charting in the Red Sea. The Cartographic Journal, 20, 5-16. https://doi.org/10.1179/caj.1983.20.1.5 |
[8] | 李铁芳, 易建春, 厉银喜, 等. 浅海水下地形地貌遥感信息提取与应用[J]. 遥感学报, 1991(1): 22-29. |
[9] | 党福星, 丁谦. 多光谱浅海水深提取方法研究[J]. 国土资源遥感, 2001, 13(4): 53-58. |
[10] | 庞蕾, 聂志峰. 星载多光谱浅海水深测量方法[J]. 山东理工大学学报(自然科学版), 2003, 17(6): 59-61. |
[11] | Kanno, A., Koibuchi, Y. and Isobe, M. (2010) Statistical Combination of Spatial Interpolation and Multispectral Remote Sensing for Shallow Water Bathymetry. IEEE Geoscience & Remote Sensing Letters, 8, 64-67.
https://doi.org/10.1109/LGRS.2010.2051658 |
[12] | Su, H., Liu, H., Wang, L., et al. (2013) Geographically Adaptive Inversion Model for Improving Bathymetric Retrieval from Satellite Multispectral Imagery. IEEE Transactions on Geoscience & Remote Sensing, 52, 465-476.
https://doi.org/10.1109/TGRS.2013.2241772 |
[13] | Stumpf, R.P., Holderied, K. and Sinclair, M. (2003) Determination of Water Depth with High-Resolution Satellite Imagery over Variable Bottom Types. Limnology & Oceanography, 48, 547-556.
https://doi.org/10.4319/lo.2003.48.1_part_2.0547 |
[14] | Clark, R.K., Fay, T.H. and Walker, C.L. (1987) A Comparison of Models for Remotely Sensed Bathymetry. |
[15] | Bramante, J., Raju, D.K. and Sin, T.M. (2013) Multispectral Derivation of Bathymetry in Singapore’s Shallow, Turbid Waters. International Journal of Remote Sensing, 34, 2070-2088. https://doi.org/10.1080/01431161.2012.734934 |
[16] | 王艳姣. 基于悬浮泥沙影响的水深遥感方法研究[D]: [博士学位论文]. 南京: 南京师范大学, 2006. |
[17] | Ceyhun, ?. and Yal?In, A. (2010) Remote Sensing of Water Depths in Shallow Waters via Artificial Neural Networks. Estuarine Coastal & Shelf Science, 89, 89-96. https://doi.org/10.1016/j.ecss.2010.05.015 |
[18] | 张东, 张鹰. 统计相关水深遥感模式的建立[J]. 河海大学学报(自然科学版), 1998(6): 95-99. |
[19] | Su, H.B., Liu, H.X. and Heyman, W.D. (2008) Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model. Marine Geodesy, 31, 281-298.
https://doi.org/10.1080/01490410802466652 |