|
带线性自排斥漂移项的分数O-U过程的统计推断
|
Abstract:
本文旨在利用最小二乘法研究带线性自排斥漂移项的分数O-U过程的统计推断。 假设BH=是Hurst 指数为
的分数布朗运动,我们考虑下列方程,
其中,
, θ < 0 和σ, ν ∈ R 是三个参数。 这个过程是自吸引扩散的模拟(见Cranston and Le Jan, Math. Ann. 303 (1995), 87-93),我们主要的目标是研究其参数的最小二乘估计。
This dissertation aim is to study statistical inference on the fractional Ornstein- Uhlenbeck process with the linear self-attracting drift by least squares estimation. Let BH= be a fractional Brownian motion with Hurst index
. We consider the following equation
, with
, where θ < 0 and σ, ν ∈ R are three parameters. The process is an analogue of the self-attracting diffusion (Cranston and Le Jan, Math. Ann. 303 (1995), 87-93). Our main aim is to study the least squares estimations of its parameters.
[1] | Durrett, R. and Rogers, L.C.G. (1991) Asymptotic Behavior of Brownian Polymer. Probability Theory and Related Fields, 92, 337-349. https://doi.org/10.1007/BF01300560 |
[2] | Coppersmith, D. and Diaconis, P. (1986) Random Walks with Reinforcement. Unpublished manuscript. |
[3] | Cranston, M. and Le Jan, Y. (1995) Self-Attracting Diffusions: Two Case Studies. Mathema- tische Annalen, 303, 87-93. https://doi.org/10.1007/BF01460980 |
[4] | % Bena¨?m, M., Ciotir, I. and Gauthier, C.-E. (2015) Self-Repelling Diffusions via an Infinite Dimensional Approach. Stochastic Partial Differential Equations: Analysis and Computations, 3, 506-530. https://doi.org/10.1007/s40072-015-0059-5 |
[5] | Gauthier, C.-E. (2016) Self Attracting Diffusions on a Sphere and Application to a Periodic Case. Electronic Communications in Probability, 21, 1-12. https://doi.org/10.1214/16-ECP4547 |
[6] | Herrmann, S. and Roynette, B. (2003) Boundedness and Convergence of Some Self-Attracting Diffusions. Mathematische Annalen, 325, 81-96. https://doi.org/10.1007/s00208-002-0370-0 |
[7] | Herrmann, S. and Scheutzow, M. (2004) Rate of Convergence of Some Self-Attracting Diffu- sions. Stochastic Processes and Their Applications, 111, 41-55. https://doi.org/10.1016/j.spa.2003.10.012 |
[8] | Bena¨?m, M., Ledoux, M. and Raimond, O. (2002) Self-Interacting Diffusions. Probability The- ory and Related Fields, 122, 1-41. https://doi.org/10.1007/s004400100161 |
[9] | Chambeu, S. and Kurtzmann, A. (2011) Some Particular Self-Interacting Diffusions: Ergodic Behaviour and Almost Sure Convergence. Bernoulli, 17, 1248-1267. https://doi.org/10.3150/10-BEJ310 |
[10] | Cranston, M. and Mountford, T.S. (1996) The Strong Law of Large Numbers for a Brownian Polymer. Annals of Probability, 24, 1300-1323. https://doi.org/10.1214/aop/1065725183 |
[11] | Mountford, T. and Tarr`es, P. (2008) An Asymptotic Result for Brownian Polymers. Annales de l’Institut Henri Poincar′e, Probabilit′es et Statistiques, 44, 29-46. https://doi.org/10.1214/07-AIHP113 |
[12] | Yan, L., Sun, Y. and Lu, Y. (2008) On the Linear Fractional Self-Attracting Diffusion. Journal of Theoretical Probability, 21, 502-516. https://doi.org/10.1007/s10959-007-0113-y |
[13] | Sun, X., Yan, L. and Ge, Y. (2022) The Laws of Large Numbers Associated with the Linear Self-Attracting Diffusion Driven by Fractional Brownian Motion and Applications. Journal of Theoretical Probability, 35, 1423-1478. https://doi.org/10.1007/s10959-021-01126-0 |
[14] | Chakravari, N. and Sebastian, K. (1997) Fractional Brownian Motion Models for Polymers. Chemical Physics Letters, 267, 9-13. https://doi.org/10.1016/S0009-2614(97)00075-4 |
[15] | Cherayil, B. and Biswas, P. (1993) Path Integral Description of Polymers Using Fractional Brownian Walks. The Journal of Chemical Physics, 99, 9230-9236. https://doi.org/10.1063/1.465539 |
[16] | Yan, L., Yang, Q. and Xia, X. Long Time Behavior on the Fractional Ornstein-Uhlenbeck Process with the Linear Self-Repelling Drift. |
[17] | Biagini, F., Hu, Y., ?ksendal, B. and Zhang, T. (2008) Stochastic Calculus for Fractional Brownian Motion and Applications. In: Probability and Its Application, Springer, Berlin. |
[18] | Hu, Y. (2005) Integral Transformations and Anticipative Calculus for Fractional Brownian Mo- tions. In: Memoirs of the American Mathematical Society, Vol. 175, American Mathematical Society, Rhode Island. https://doi.org/10.1090/memo/0825 |
[19] | Mishura, Y.S. (2008) Stochastic Calculus for Fractional Brownian Motion and Related Pro- cesses. In: Lecture Notes in Mathematics, Vol. 1929, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75873-0 |
[20] | Nualart, D. (2006) Malliavin Calculus and Related Topics. 2nd Edition, Springer, Heidelberg, New York. |
[21] | Nourdin, I. (2012) Selected Aspects of Fractional Brownian Motion. Springer-Verlag, Milano. https://doi.org/10.1007/978-88-470-2823-4 |
[22] | Tudor, C. (2013) Analysis of Variations for Self-Similar Processes. Springer, Heidelberg, New York. |
[23] | Nualart, D. and Ortiz-Latorre, S. (2008) Central Limit Theorems for Multiple Stochastic integrals And Malliavin Calculus. Stochastic Processes and Their Applications, 118, 614-628. https://doi.org/10.1016/j.spa.2007.05.004 |
[24] | Nualart, D. and Peccati, G. (2005) Central Limit Theorems for Sequences of Multiple Stochas- tic Integrals. Annals of Probability, 33, 177-193. https://doi.org/10.1214/009117904000000621 |
[25] | Decreusefond, L. and U¨ stu¨nel, A.S. (1999) Stochastic Analysis of the Fractional Brownian Motion. Potential Analysis, 10, 177-214. https://doi.org/10.1023/A:1008634027843 |
[26] | Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Langhorne, PA. |
[27] | Es-Sebaiy, K. and Nourdin, I. (1991) Parameter Estimation for α Fractional Bridges. Proba- bility Theory and Related Fields, 92, 337-349. |