全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于双权重反馈策略恢复耦合系统的振荡动力学
Recovery of Oscillatory Dynamics of Coupled Systems Based on Double Weight Feedback Strategy

DOI: 10.12677/AAM.2023.124199, PP. 1940-1950

Keywords: 振荡猝灭,双权重反馈,振荡复苏,耦合系统
Oscillation Quenching
, Double-Weighted Feedback, Oscillation Revival, Coupled System

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在平均场反馈的基础上建立了双权重反馈,分别以系统振子频率相同和频率不同的情况为例,通过稳定性分析和数值模拟,发现在大多数系统中当两个权重同时为0或1时效果最好,这意味着在实际中,我们只需寻找最易得到信息的振子,将其作为反馈加到该振子上,就能简单便捷的恢复不同死亡状态下的系统振荡。而实际模型中,最易得到信息的振子一般也是最易添加反馈的振子,这将有效提高本策略的实际应用性。
In this paper, based on the mean-field feedback, we establish a double-weighted feedback, taking the case of system oscillators with the same frequency and different frequencies respectively, and through stability analysis and numerical simulation, we find that the best effect in most systems when the two weights are 0 or 1 at the same time, which means that in practice, we only need to find the oscillator with the most easily available information and add it as feedback to that oscillator, and we can simply and conveniently recover oscillations of the system in different death states. In the actual model, the oscillator that is easiest to get information is generally also the oscillator that is easiest to add feedback to, which will effectively improve the practical applicability of this strate-gy.

References

[1]  Rayleigh, J.W.S. and Lindsay, R.B. (1945) The Theory of Sound.
[2]  Reddy, D.R., Sen, A. and Johnston, G.L. (1998) Time Delay Induced Death in Coupled Limit Cycle Oscillators. Physical Review Letters, 80, 5109.
https://doi.org/10.1103/PhysRevLett.80.5109
[3]  Zhai, Y., Kiss, I.Z. and Hudson, J.L. (2004) Amplitude Death through a Hopf Bifurcation in Coupled Electrochemical Oscillators: Experiments and Simulations. Physical Review E, 69, Article ID: 026208.
https://doi.org/10.1103/PhysRevE.69.026208
[4]  Arumugam, R., Dutta, P.S. and Banerjee, T. (2016) Environ-mental Coupling in Ecosystems: From Oscillation Quenching to Rhythmogenesis. Physical Review E, 94, Article ID: 022206.
https://doi.org/10.1103/PhysRevE.94.022206
[5]  Daniel, E., Meindertsma, T., Arazi, A., Donner, T.H. and Din-stein, I. (2019) The Relationship between Neural Variability and Neural Oscillations.
https://doi.org/10.1101/555649
[6]  Koseska, A., Ullner, E., Volkov, E., Kurths, J. and García-Ojalvo, J. (2010) Cooperative Differentiation through Clustering in Multicellular Populations. Journal of Theoretical Biology, 263, 189-202.
https://doi.org/10.1016/j.jtbi.2009.11.007
[7]  Koseska, A., Volkov, E. and Kurths, J. (2013) Oscillation Quench-ing Mechanisms: Amplitude vs. Oscillation Death. Physics Reports, 531, 173-199.
https://doi.org/10.1016/j.physrep.2013.06.001
[8]  Koseska, A., Volkov, E. and Kurths, J. (2013) Transition from Amplitude to Oscillation Death via Turing Bifurcation. Physical Review Letters, 111, Article ID: 024103.
https://doi.org/10.1103/PhysRevLett.111.024103
[9]  Jalife, J., Gray, R.A., Morley, G.E. and Davidenko, J.M. (1998) Self-Organization and the Dynamical Nature of Ventricular Fibrillation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 8, 79-93.
https://doi.org/10.1063/1.166289
[10]  Wang, X.J. (2020) Macroscopic Gradients of Synaptic Excitation and Inhibi-tion in the Neocortex. Nature Reviews Neuroscience, 21, 169-178.
https://doi.org/10.1038/s41583-020-0262-x
[11]  Ching, S., Purdon, P.L., Vijayan, S., Kopell, N.J. and Brown, E.N. (2012) A Neurophysiological-Metabolic Model for Burst Suppression. Proceedings of the National Academy of Sciences, 109, 3095-3100.
https://doi.org/10.1073/pnas.1121461109
[12]  Koseska, A., Volkov, E. and Kurths, J. (2013) Transition from Am-plitude to Oscillation Death via Turing Bifurcation. Physical Review Letters, 111, Article ID: 024103.
https://doi.org/10.1103/PhysRevLett.111.024103
[13]  Motter, A.E., Myers, S.A., Anghel, M. and Nishikawa, T. (2013) Spontaneous Synchrony in Power-Grid Networks. Nature Physics, 9, 191-197.
https://doi.org/10.1038/nphys2535
[14]  Popovych, O.V., Hauptmann, C. and Tass, P.A. (2005) Effective Desyn-chronization by Nonlinear Delayed Feedback. Physical Review Letters, 94, Article ID: 164102.
https://doi.org/10.1103/PhysRevLett.94.164102
[15]  Zou, W., Yao, C. and Zhan, M. (2010) Eliminating De-lay-Induced Oscillation Death by Gradient Coupling. Physical Review E, 82, Article ID: 056203.
https://doi.org/10.1103/PhysRevE.82.056203
[16]  Zou, W., Senthilkumar, D.V., Zhan, M. and Kurths, J. (2013) Reviving Oscillations in Coupled Nonlinear Oscillators. Physical Review Letters, 111, Article ID: 014101.
https://doi.org/10.1103/PhysRevLett.111.014101
[17]  Zou, W., Senthilkumar, D.V., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A. and Kurths, J. (2015) Restoration of Rhythmicity in Diffusively Coupled Dynamical Networks. Nature Communications, 6, Article No. 7709.
https://doi.org/10.1038/ncomms8709
[18]  Zou, W., Zhan, M. and Kurths, J. (2017) Revoking Amplitude and Os-cillation Deaths by Low-Pass Filter in Coupled Oscillators. Physical Review E, 95, Article ID: 062206.
https://doi.org/10.1103/PhysRevE.95.062206
[19]  Yadav, M., Sharma, A., Shrimali, M.D. and Sinha, S. (2018) Revival of Oscillations via Common Environment. Nonlinear Dynamics, 91, 2219-2225.
https://doi.org/10.1007/s11071-017-4010-3
[20]  Zhao, N., Sun, Z., Yang, X. and Xu, W. (2017) Restoration of Oscillation from Conjugate-Coupling-Induced Amplitude Death. Europhysics Letters, 118, 30005.
https://doi.org/10.1209/0295-5075/118/30005
[21]  Li, W. and Krstic, M. (2022) Prescribed-Time Output-Feedback Control of Stochastic Nonlinear Systems. IEEE Transactions on Automatic Control, 68, 1431-1446.
https://doi.org/10.1109/TAC.2022.3151587
[22]  Madaan, N. and Sharma, S. (2022) Delayed-Feedback Control in Multi-Lane Traffic System. Physica A: Statistical Mechanics and Its Applications, 2022, Article ID: 127393.
https://doi.org/10.1016/j.physa.2022.127393
[23]  Xu, X., Liu, L., Krstic, M. and Feng, G. (2022) Stability Analy-sis and Predictor Feedback Control for Systems with Unbounded Delays. Automatica, 135, Article ID: 109958.
https://doi.org/10.1016/j.automatica.2021.109958
[24]  Wang, X.F. and Chen, G. (2002) Pinning Control of Scale-Free Dynamical Networks. Physica A: Statistical Mechanics and Its Applications, 310, 521-531.
https://doi.org/10.1016/S0378-4371(02)00772-0
[25]  Chandrasekar, V.K., Karthiga, S. and Lakshmanan, M. (2015) Feedback as a Mechanism for the Resurrection of Oscillations from Death States. Physical Review E, 92, Article ID: 012903.
https://doi.org/10.1103/PhysRevE.92.012903
[26]  Zhao, N. and Sun, Z. (2020) Overcoming Oscillation Quenching via Mean-Field Feedback. International Journal of Bifurcation and Chaos, 30, Article ID: 2050094.
https://doi.org/10.1142/S0218127420500947
[27]  Karnatak, R., Ramaswamy, R. and Prasad, A. (2007) Amplitude Death in the Absence of Time Delays in Identical Coupled Oscillators. Physical Review E, 76, Article ID: 035201.
https://doi.org/10.1103/PhysRevE.76.035201
[28]  Konishi, K. (2003) Amplitude Death Induced by Dynamic Cou-pling. Physical Review E, 68, Article ID: 067202.
https://doi.org/10.1103/PhysRevE.68.067202
[29]  Premraj, D., Manoj, K., Pawar, S.A., et al. (2021) Effect of Amplitude and Frequency of Limit Cycle Oscillators on Their Coupled and Forced Dynamics. Nonlinear Dynamics, 103, 1439-1452.
https://doi.org/10.1007/s11071-020-06135-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133