|
常维码的多重构造方法的新改进
|
Abstract:
常维码(constant dimension codes)作为一种特殊的子空间码,由于其在随机网络编码中的应用而受到关注。Etzion等人在[IEEE Trans. Inf. Theory, 55 (2009), 2909–2919.]给出了子空间距离与汉明距离、秩距离之间的关系,并提出了构造常维码的一种重要方法——多重构造法,此构造法也已被众多学者进行了推广。本文在原多重构造的基础上,利用待定点增加子空间距离的思想更加精细地刻画了子空间距离与汉明距离之间的关系,由此给出了寻找子空间码标识向量更一般的方法,利用此方法提升了(14,6,4)q-常维码的下界。
Constant dimension codes (CDCs), as special subspace codes, have received a lot of attention due to its application in random network coding. Multilevel construction, as an important construction of CDCs, was raised by Etzion et al. in [IEEE Trans. Inf. Theory, 55 (2009), 2909–2919.] by explaining the relation between subspace distance and Hamming distance, rank distance. This construction has also been generalized by many scholars. Based on the original multilevel construction, the pa-per uses the idea of increasing subspace distance by fixing pending dots to more delicately describe the relationship between subspace distance and Hamming distance. Therefore, we provide a more general method for finding the identifying vectors of subspace codes and also improve the lower bound of (14,6,4)q -CDC.
[1] | K?tter, R. and Kschischang, F.R. (2008) Coding for Errors and Erasures in Random Network Coding. IEEE Transac-tions on Information Theory, 54, 3579-3591. https://doi.org/10.1109/TIT.2008.926449 |
[2] | Etzion, T. and Vardy, A. (2011) Error-Correcting Codes in Projective Spaces. IEEE Transactions on Information Theory, 57, 1165-1173. https://doi.org/10.1109/TIT.2010.2095232 |
[3] | Etzion, T. and Silberstein, N. (2009) Error-Correcting Codes in Projective Spaces via Rank-Metric Codes and Ferrers Diagrams. IEEE Transactions on Information Theory, 55, 2909-2919. https://doi.org/10.1109/TIT.2009.2021376 |
[4] | Trautmann, A.-L. and Rosenthal, J. (2010) New Im-provements on the Echelon-Ferrers Construction. Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems MTNS, Budapest, July 2010, 405-408. |
[5] | Etzion, T. and Silberstein, N. (2013) Codes and Designs Related to Lifted MRD Codes. IEEE Transactions on Information Theory, 59, 1004-1017. https://doi.org/10.1109/TIT.2012.2220119 |
[6] | Silberstein, N. and Trautmann, A.-L. (2015) Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks. IEEE Transactions on Information Theory, 61, 3937-3953. https://doi.org/10.1109/TIT.2015.2435743 |
[7] | Gorla, E. and Ravagnani, A. (2017) Subspace Codes from Ferrers Diagrams. Journal of Algebra and Its Applications, 16, Article ID: 1750131. https://doi.org/10.1142/S0219498817501316 |
[8] | Liu, S., Chang, Y. and Feng, T. (2020) Parallel Multilevel Con-structions for Constant Dimension Codes. IEEE Transactions on Information Theory, 66, 6884-6897. https://doi.org/10.1109/TIT.2020.3004315 |
[9] | Yu, S., Ji, L. and Liu, S. (2022) Bilateral Multilevel Construction of Constant Dimension Codes. Advances in Mathematics of Communications, 16, 1165-1183. https://doi.org/10.3934/amc.2022056 |
[10] | Liu, S. and Ji, L. (2023) Double Multilevel Constructions for Constant Dimension Codes. IEEE Transactions on Information Theory, 69, 157-168. https://doi.org/10.1109/TIT.2022.3200052 |
[11] | Antrobus, J. and Gluesing-Luerssen, H. (2019) Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations. IEEE Transactions on Information Theory, 65, 6204-6223. https://doi.org/10.1109/TIT.2019.2926256 |
[12] | Etzion, T., Gorla, E., Ravagnani, A. and Wachter-Zeh, A. (2016) Optimal Ferrers Diagram Rank-Metric Codes. IEEE Transactions on Information Theory, 62, 1616-1630. https://doi.org/10.1109/TIT.2016.2522971 |
[13] | Liu, S., Chang, Y. and Feng, T. (2019) Constructions for Optimal Ferrers Diagram Rank-Metric Codes. IEEE Transactions on Information Theory, 65, 4115-4130. https://doi.org/10.1109/TIT.2019.2894401 |
[14] | Liu, S., Chang, Y. and Feng, T. (2019) Several Classes of Optimal Ferrers Diagram Rank-Metric Codes. Linear Algebra and Its Applications, 581, 128-144. https://doi.org/10.1016/j.laa.2019.07.011 |
[15] | Zhang, T. and Ge, G. (2019) Constructions of Optimal Ferrers Dia-gram Rank Metric Codes. Designs, Codes and Cryptography, 87, 107-121. https://doi.org/10.1007/s10623-018-0491-4 |