|
超早产儿呼吸支持研究进展
|
Abstract:
早产是全球婴儿死亡和发病的主要原因,其中超早产儿常合并母孕期高危因素,出生时各器官发育不成熟,即使存活的超早产儿在住院期间也可能会存在一些严重并发症影响其生存质量,是新生儿重症监护病房的救治重点。本文就超早产儿呼吸管理策略进行综述,为优化超早产儿早期干预提供依据。
Preterm birth is the leading cause of infant mortality and morbidity worldwide, among which ex-tremely preterm infants (EPI) are often combined with maternal high-risk factors during pregnancy, and the organs are immature at birth; even surviving extremely preterm infants may have some severe complications during hospitalization that affect their quality of life, which is the focus of treatment in neonatal intensive care units (NICU). This article reviews the respiratory management strategies of extremely preterm infants to provide a basis for optimizing early intervention in ex-tremely preterm infants.
[1] | NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes (1995) Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA, 273, 413-418.
https://doi.org/10.1001/jama.273.5.413 |
[2] | Committee on Obstetric Practice (2017) Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstetrics & Gynecology, 130, e102-e109. https://doi.org/10.1097/AOG.0000000000002237 |
[3] | Sweet, D.G., Carnielli, V.P., Greisen, G., Hallman, M., Klebermass-Schrehof, K., et al. (2023) European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology, 120, 3-23.
https://doi.org/10.1159/000528914 |
[4] | Travers, C.P., Carlo, W.A., McDonald, S.A., et al. (2018) Mortality and Pulmonary Outcomes of Extremely Preterm Infants Exposed to Antenatal Corticosteroids. American Journal of Obstet-rics & Gynecology, 218, 130.e1-130.e13. |
[5] | Blankenship, S.A., Brown, K.E., Simon, L.E., Stout, M.J. and Tuuli, M.G. (2020) Antenatal Corticosteroids in Preterm Small-for-Gestational Age Infants: A Systematic Review and Me-ta-Analysis. American Journal of Obstetrics & Gynecology MFM, 2, Article ID: 100215. https://doi.org/10.1016/j.ajogmf.2020.100215 |
[6] | McGoldrick, E., Stewart, F., Parker, R. and Dalziel, S.R. (2020) Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Data-base of Systematic Reviews, No. 12, CD004454.
https://doi.org/10.1002/14651858.CD004454.pub4 |
[7] | Roberts, D., Brown, J., Medley, N. and Dalziel, S.R. (2017) Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews, 3, CD004454.
https://doi.org/10.1002/14651858.CD004454.pub3 |
[8] | Deshmukh, M. and Patole, S. (2018) Antenatal Cortico-steroids in Impending Preterm Deliveries before 25 Weeks’ Gestation. ADC Fetal & Neonatal Edition, 103, F173-F176. https://doi.org/10.1136/archdischild-2017-313840 |
[9] | Hallman, M., Ronkainen, E., Saarela, T.V. and Marttila, R.H. (2022) Management Practices during Perinatal Respiratory Transition of Very Premature Infants. Frontiers in Pedi-atrics, 10, Article ID: 862038.
https://doi.org/10.3389/fped.2022.862038 |
[10] | Seckl, J.R. (2004) Prenatal Glucocorticoids and Long-Term Pro-gramming. European Journal of Endocrinology, Supplement, 151, U49-U62. https://doi.org/10.1530/eje.0.151u049 |
[11] | Ninan, K., Liyanage, S.K., Murphy, K.E., Asztalos, E.V. and McDonald, S.D. (2022) Evaluation of Long-Term Outcomes Associated with Preterm Exposure to Antenatal Corticosteroids: A Systematic Review and Meta-Analysis. JAMA Pediatrics, 176, e220483. https://doi.org/10.1001/jamapediatrics.2022.0483 |
[12] | American College of Obstetricians and Gynecologists Com-mittee on Obstetric Practice (2017) Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstetrics & Gynecology, 130, e102-e109.
https://doi.org/10.1097/AOG.0000000000002237 |
[13] | Wapner, R.J., Sorokin, Y., Mele, L., Johnson, F., Dudley, D.J., Spong, C.Y., et al. (2007) Long-Term Outcomes after Repeat Doses of Antenatal Corticosteroids. The New Eng-land Journal of Medicine, 357, 1190-1198.
https://doi.org/10.1056/NEJMoa071453 |
[14] | Crowther, C.A., McKinlay, C.J., Middleton, P. and Harding, J.E. (2015) Repeat Doses of Prenatal Corticosteroids for Women at Risk of Preterm Birth for Improving Neonatal Health Outcomes. Cochrane Database of Systematic Reviews, 7, CD003935. https://doi.org/10.1002/14651858.CD003935.pub4 |
[15] | Brownfoot, F.C., Gagliardi, D.I., Bain, E., Middleton, P. and Crowther, C.A. (2013) Different Corticosteroids and Regimens for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews, No. 8, CD006764. https://doi.org/10.1002/14651858.CD006764.pub3 |
[16] | Subramaniam, P., Ho, J.J. and Davis, P.G. (2021) Prophylactic or Very Early Initiation of Continuous Positive Airway Pressure (CPAP) for Preterm Infants. Cochrane Database of Systematic Reviews, 10, CD001243.
https://doi.org/10.1002/14651858.CD001243.pub4 |
[17] | Kirpalani, H., Ratcliffe, S.J., Keszler, M., Davis, P.G., et al. (2019) Effect of Sustained Inflations vs Intermittent Positive Pressure Ventilation on Bronchopulmonary Dysplasia or Death among Extremely Preterm Infants: The SAIL Randomized Clinical Trial. JAMA, 321, 1165-1175. https://doi.org/10.1001/jama.2019.1660 |
[18] | Jobe, A.H. (1993) Pulmonary Surfactant Therapy. The New England Journal of Medicine, 328, 861-868.
https://doi.org/10.1056/NEJM199303253281208 |
[19] | Soll, R.F. (2000) Synthetic Surfactant for Respiratory Dis-tress Syndrome in Preterm Infants. Cochrane Database of Systematic Reviews, 1998, CD001149. https://doi.org/10.1002/14651858.CD001149 |
[20] | Jena, S.R., Bains, H.S., Pandita, A., Verma, A., Gupta, V., Kal-lem, V.R., et al. (2019) Surfactant Therapy in Premature Babies: SurE or InSurE. Pediatric Pulmonology, 54, 1747-1752. https://doi.org/10.1002/ppul.24479 |
[21] | Pandita, A. and Panza, R. (2020) Sure or Insure. Pediatric Pulmonology, 55, 18-19. https://doi.org/10.1002/ppul.24573 |
[22] | Kribs, A., Roll, C., G?pel, W., Wieg, C., Groneck, P., Laux, R., et al. (2015) Nonintubated Surfactant Application vs Conventional Therapy in Extremely Preterm Infants: A Randomized Clinical Trial. JAMA Pediatrics, 169, 723-730.
https://doi.org/10.1001/jamapediatrics.2015.0504 |
[23] | Abdel-Latif, M.E., Davis, P.G., Wheeler, K.I., de Paoli, A.G. and Dargaville, P.A. (2021) Surfactant Therapy via Thin Catheter in Preterm Infants with or at Risk of Respiratory Dis-tress Syndrome. Cochrane Database of Systematic Reviews, 5, CD011672. https://doi.org/10.1002/14651858.CD011672.pub2 |
[24] | Sweet, D.G., Carnielli, V., Greisen, G., Hallman, M., Ozek, E., Te Pas, A., et al. (2019) European Consensus Guidelines on the Management of Respiratory Distress Syn-drome—2019 Update. Neonatology, 115, 432-450.
https://doi.org/10.1159/000499361 |
[25] | K?ro?lu, O.A., MacFarlane, P.M., Balan, K.V., et al. (2014) An-ti-Inflammatory Effect of Caffeine Is Associated with Improved Lung Function after Lipopolysaccharide-Induced Amni-onitis. Neonatology, 106, 235-240.
https://doi.org/10.1159/000363217 |
[26] | Chavez, L. and Bancalari, E. (2022) Caffeine: Some of the Evidence behind Its Use and Abuse in the Preterm Infant. Neonatology, 119, 428-432. https://doi.org/10.1159/000525267 |
[27] | Schmidt, B., Roberts, R.S., Davis, P., Doyle, L.W., Barrington, K.J., Ohlsson, A., et al. (2006) Ca?eine Therapy for Apnea of Prematurity. The New England Journal of Medicine, 354, 2112-2121.
https://doi.org/10.1056/NEJMoa054065 |
[28] | Schmidt, B., Roberts, R.S., Davis, P., Doyle, L.W., Barrington, K.J., Ohlsson, A., et al. (2007) Long-Term Effects of Caffeine Therapy for Apnea of Prematurity. The New England Journal of Medicine, 357, 1893-1902.
https://doi.org/10.1056/NEJMoa073679 |
[29] | Schmidt, B. anderson, P.J., Doyle, L.W., Dewey, D., Grunau, R.E., Asztalos, E.V., et al. (2012) Survival without Disability to Age 5 Years after Neonatal Caffeine Therapy for Apnea of Prematurity. JAMA, 307, 275-282.
https://doi.org/10.1001/jama.2011.2024 |
[30] | National Guideline Alliance (UK) (2019) Specialist Neonatal Respira-tory Care for Babies Born Preterm. National Institute for Health and Care Excellence (UK), London. https://www.nice.org.uk/guidance/ng124 |
[31] | Abu-Shaweesh, J.M. and Martin, R.J. (2017) Caffeine Use in the Neonatal Intensive Care Unit. Seminars in Fetal and Neonatal Medicine, 22, 342-347. https://doi.org/10.1001/jama.2011.2024 |
[32] | Patel, R.M., Leong, T., Carlton, D.P. and Vyas-Read, S. (2013) Early Caffeine Therapy and Clinical Outcomes in Extremely Preterm Infants. Journal of Perinatology, 33, 134-140. https://doi.org/10.1038/jp.2012.52 |
[33] | Katheria, A.C., Sauberan, J.B., Akotia, D., et al. (2015) A Pilot Random-ized Controlled Trial of Early versus Routine Caffeine in Extremely Premature Infants. American Journal of Perinatology, 32, 879-886.
https://doi.org/10.1055/s-0034-1543981 |
[34] | Dekker, J., Hooper, S.B., van Vonderen, J.J., et al. (2017) Caffeine to Improve Breathing Effort of Preterm Infants at Birth: A Randomized Controlled Trial. Pediatric Research, 82, 290-296. https://doi.org/10.1038/pr.2017.45 |
[35] | Dix, L.M.L., van Bel, F., Baerts, W. and Lemmers, P.M.A. (2018) Effects of Caffeine on the Preterm Brain: An Observational Study. Early Human Development, 120, 17-20. https://doi.org/10.1016/j.earlhumdev.2018.03.008 |
[36] | Silva, C.G., Métin, C., Fazeli, W., et al. (2013) Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice. Science Translational Medicine, 5, 197ra104. https://doi.org/10.1126/scitranslmed.3006258 |
[37] | Hvolgaard, M.S., Obel, C., Olsen, J., Niclasen, J.,et al. (2017) Maternal Caffeine Consumption during Pregnancy and Behavioral Disorders in 11-Year-Old Offspring: A Danish National Birth Cohort Study. The Journal of Pediatrics, 189, 120-127.e1. https://doi.org/10.1016/j.jpeds.2017.06.051 |
[38] | Vesoulis, Z.A., McPherson, C., Neil, J.J., Mathur, A.M. and In-der, T.E. (2016) Early High-Dose Caffeine Increases Seizure Burden in Extremely Preterm Neonates: A Preliminary Study. Journal of Caffeine Research, 6, 101-107.
https://doi.org/10.1089/jcr.2016.0012 |
[39] | Liu, S.S., Zhang, X.L., Liu, Y.C., Yuan, X., et al. (2020) Early Applica-tion of Caffeine Improves White Matter Development in Very Preterm Infants. Respiratory Physiology & Neurobiology, 281, Article ID: 103495.
https://doi.org/10.1016/j.resp.2020.103495 |
[40] | Patel, R.M., Zimmerman, K., Carlton, D.P., et al. (2017) Early Caffeine Prophylaxis and Risk of Failure of Initial Continuous Positive Airway Pressure in Very Low Birth Weight In-fants. The Journal of Pediatrics, 190, 108-111.e1.
https://doi.org/10.1016/j.jpeds.2017.07.006 |
[41] | Lim, S.Y., May, C.B., Johnson, P.N., et al. (2023) Caffeine Dos-ing in Premature Neonates: Impact of Birth Weight on a Pharmacokinetic Simulation Study. Pediatric Research, 93, 696-700. https://doi.org/10.1038/s41390-022-02172-y |
[42] | Puia-Dumitrescu, M., Smith, P.B., Zhao, J., et al. (2019) Dosing and Safety of Off-Label Use of Caffeine Citrate in Premature Infants. The Journal of Pediatrics, 211, 27-32.e1. https://doi.org/10.1016/j.jpeds.2019.04.028 |
[43] | Eichenwald, E.C. (2016) Committee on Fetus and Newborn, American Academy of Pediatrics. Apnea of Prematurity. Pediatrics, 137, e20153757. https://doi.org/10.1542/peds.2015-3757 |
[44] | Support Study Group of the Eunice Kennedy Shriver NICHD Neo-natal Research Network, et al. (2010) Early CPAP versus Surfactant in Extremely Preterm Infants. The New England Journal of Medicine, 362, 1970-1979.
https://doi.org/10.1056/NEJMoa0911783 |
[45] | Fischer, H.S. and Bührer, C. (2013) Avoiding Endotracheal Ventila-tion to Prevent Bronchopulmonary Dysplasia: A Meta-Analysis. Pediatrics, 132, e1351-e1361. https://doi.org/10.1542/peds.2013-1880 |
[46] | Wright, C.J., Polin, R.A. and Kirpalani, H. (2016) Continuous Posi-tive Airway Pressure to Prevent Neonatal Lung Injury: How Did We Get Here, and How Do We Improve? The Journal of Pediatrics, 173, 17-24.e12.
https://doi.org/10.1016/j.jpeds.2016.02.059 |
[47] | Stoll, B.J., Hansen, N.I., Bell, E.F., et al. (2015) Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. JAMA, 314, 1039-1051. https://doi.org/10.1001/jama.2015.10244 |
[48] | Dargaville, P.A., Gerber, A., Johansson, S., et al. (2016) Incidence and Outcome of CPAP Failure in Preterm Infants. Pediatrics, 138, e20153985. https://doi.org/10.1542/peds.2015-3985 |
[49] | Fernandez-Gonzalez, S.M., Sucasas Alonso, A., Ogando Martinez, A. and Avila-Alvarez, A. (2022) Incidence, Predictors and Outcomes of Noninvasive Ventilation Failure in Very Preterm Infants. Children (Basel), 9, 426.
https://doi.org/10.3390/children9030426 |
[50] | Lemyre, B., Davis, P.G., De Paoli, A.G. and Kirpalani, H. (2017) Nasal Intermittent Positive Pressure Ventilation (NIPPV) versus Nasal Continuous Positive Airway Pressure (NCPAP) for Preterm Neonates after Extubation. Cochrane Database of Systematic Reviews, 2, CD003212. https://doi.org/10.1002/14651858.CD003212.pub3 |
[51] | Ferguson, K.N., Roberts, C.T., Manley, B.J. and Davis, P.G. (2017) Interventions to Improve Rates of Successful Extubation in Preterm Infants. A Systematic Review and Me-ta-Analysis. JAMA Pediatrics, 171, 165-174.
https://doi.org/10.1001/jamapediatrics.2016.3015 |
[52] | Schulzke, S.M. and Stoecklin, B. (2022) Update on Ventila-tory Management of Extremely Preterm Infants—A Neonatal Intensive Care Unit Perspective. Pediatric Anesthesia, 32, 363-371. https://doi.org/10.1111/pan.14369 |
[53] | Kostekci, Y.E., Okulu, E., Bakirarar, B., et al. (2022) Nasal Con-tinuous Positive Airway Pressure vs. Nasal Intermittent Positive Pressure Ventilation as Initial Treatment after Birth in Extremely Preterm Infants. Frontiers in Pediatrics, 10, Article ID: 870125. https://doi.org/10.3389/fped.2022.870125 |
[54] | Li, J., Li, X., Huang, X. and Zhang, Z. (2019) Noninvasive High-Frequency Oscillatory Ventilation as Respiratory Support in Preterm Infants: A Meta-Analysis of Randomized Controlled Trials. Respiratory Research, 20, 58.
https://doi.org/10.1186/s12931-019-1023-0 |
[55] | Cheong, J.L.Y. and Doyle, L.W. (2018) An Update on Pulmonary and Neurodevelopmental Outcomes of Bronchopulmonary Dysplasia. Seminars in Perinatology, 42, 478-484. https://doi.org/10.1053/j.semperi.2018.09.013 |
[56] | Wai, K.C., Keller, R.L., Lusk, L.A., et al. (2017) Characteristics of Extremely Low Gestational Age Newborns Undergoing Tracheotomy: A Secondary Analysis of the Trial of Late Sur-factant Randomized Clinical Trial. JAMA Otolaryngology—Head & Neck Surgery, 143, 13-19. https://doi.org/10.1001/jamaoto.2016.2428 |
[57] | Klingenberg, C., Wheeler, K.I., McCallion, N., et al. (2017) Vol-ume-Targeted versus Pressure-Limited Ventilation in Neonates. Cochrane Database of Systematic Reviews, 10, CD003666.
https://doi.org/10.1002/14651858.CD003666.pub4 |
[58] | De Jaegere, A.P., Deurloo, E.E., van Rijn, R.R., et al. (2016) Individualized Lung Recruitment during High-Frequency Ventilation in Preterm Infants Is Not Associated with Lung Hyperinflation and Air Leaks. European Journal of Pediatrics, 175, 1085-1090. https://doi.org/10.1007/s00431-016-2744-4 |
[59] | Lin, H.Z., Lin, W.H., Lin, S.H., et al. (2022) Application of High-Frequency Oscillation Ventilation Combined with Volume Guarantee in Preterm Infants with Acute Hypoxic Res-piratory Failure after Patent Ductus Arteriosus Ligation. The Heart Surgery Forum, 25, E709-E714. https://doi.org/10.1532/hsf.4825 |
[60] | Rodríguez Sánchez de la Blanca, A., Sánchez, L.M., González, P.N., Ramos, N.C., et al. (2020) New Indicators for Optimal Lung Recruitment during High Frequency Oscillator Ventilation. Pediat-ric Pulmonology, 55, 3525-3531.
https://doi.org/10.1002/ppul.25084 |