|
视网膜静脉阻塞继发黄斑水肿发病机制研究
|
Abstract:
视网膜静脉阻塞(RVO)是眼底常见的视网膜血管性疾病,其并发的黄斑水肿(ME)是RVO最严重的并发症,是引起视力下降的主要原因。随着经济的发展,RVO并发ME的患病率在增加,越来越多科学家研究其发病机制以及治疗方法。RVO并发ME发病机制复杂,本文就其发病机制展开综述。
Retinal vein occlusion (RVO) is a common retinal vascular disease. Macular edema (ME) is one of the severest complication and the main reason for decreased visual acuity. With the development of the society, the prevalence of ME secondary to RVO is constantly increasing. Plenty of scientists are in-terested in the metabolism and treatment of ME secondary to RVO. The review discusses the com-plicated pathogenesis of ME with RVO.
[1] | Song, P., Xu, Y., Zha, M., et al. (2019) Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Me-ta-Analysis of Prevalence, Incidence, and Risk Factors. Journal of Global Health, 9, 10427.
https://doi.org/10.7189/jogh.09.010427 |
[2] | Rogers, S., McIntosh, R.L., Cheung, N., et al. (2010) The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Ophthalmology, 117, 313-319.
https://doi.org/10.1016/j.ophtha.2009.07.017 |
[3] | Daruich, A., Matet, A., Moulin, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. https://doi.org/10.1016/j.preteyeres.2017.10.006 |
[4] | Diaz-Coranguez, M., Ramos, C. and Antonetti, D.A. (2017) The Inner Blood-Retinal Barrier: Cellular Basis and Development. Vision Research, 139, 123-137. https://doi.org/10.1016/j.visres.2017.05.009 |
[5] | Cunha-Vaz, J. (2017) Mechanisms of Retinal Fluid Accumulation and Blood-Retinal Barrier Breakdown. Developments in Ophthalmology, 58, 11-20. https://doi.org/10.1159/000455265 |
[6] | 雍红芳, 戚卉, 吴瑛洁, 等. 视网膜静脉阻塞继发黄斑水肿发病机制及黄斑水肿影响视功能的研究进展[J]. 国际眼科杂志, 2019, 19(11): 1888-1891. |
[7] | Kirkley, K.S., Popichak, K.A., Afzali, M.F., et al. (2017) Microglia Amplify Inflammatory Activation of Astrocytes in Manganese Neurotoxicity. Jour-nal of Neuroinflammation, 14, 99. https://doi.org/10.1186/s12974-017-0871-0 |
[8] | Roubeix, C., Dominguez, E., Raoul, W., et al. (2019) Mo-Derived Perivascular Macrophage Recruitment Protects against Endothelial Cell Death in Retinal Vein Occlusion. Journal of Neuroinflammation, 16, 157.
https://doi.org/10.1186/s12974-019-1547-8 |
[9] | Otxoa-de-Amezaga, A., Miro-Mur, F., Pedragosa, J., et al. (2019) Microglial Cell Loss after Ischemic Stroke Favors Brain Neutrophil Accumulation. Acta Neuropathologica, 137, 321-341. https://doi.org/10.1007/s00401-018-1954-4 |
[10] | Nicchia, G.P., Pisani, F., Simone, L., et al. (2016) Glio-Vascular Modifications Caused by Aquaporin-4 Deletion in the Mouse Retina. Experimental Eye Research, 146, 259-268. https://doi.org/10.1016/j.exer.2016.03.019 |
[11] | Liu, X., Ye, F., Xiong, H., et al. (2015) IL-1beta Induces IL-6 Production in Retinal Muller Cells Predominantly through the Activation of p38 MAPK/NF-kappaB Signaling Pathway. Experimental Cell Research, 331, 223-231.
https://doi.org/10.1016/j.yexcr.2014.08.040 |
[12] | Noma, H., Yasuda, K. and Shimura, M. (2020) Cytokines and Pathogenesis of Central Retinal Vein Occlusion. Journal of Clinical Medicine, 9, 3457. https://doi.org/10.3390/jcm9113457 |
[13] | Noma, H., Funatsu, H., Mimura, T., et al. (2009) Vitreous Levels of In-terleukin-6 and Vascular Endothelial Growth Factor in Macular Edema with Central Retinal Vein Occlusion. Ophthal-mology, 116, 87-93.
https://doi.org/10.1016/j.ophtha.2008.09.034 |
[14] | Mesquida, M., Drawnel, F., Lait, P.J., et al. (2019) Modelling Macular Edema: The Effect of IL-6 and IL-6R Blockade on Human Blood-Retinal Barrier Integrity in Vitro. Translation-al Vision Science & Technology, 8, 32.
https://doi.org/10.1167/tvst.8.5.32 |
[15] | 刘自强, 金明. 视网膜静脉阻塞继发黄斑水肿的发病机制研究进展[J] 中国中医眼科杂志, 2021, 31(12): 897-901. |
[16] | Wei, F., Liu, S., Luo, L., et al. (2017) Anti-Inflammatory Mechanism of Ulinastatin: Inhibiting the Hyperpermeability of Vascular Endothelial Cells Induced by TNF-Alpha via the RhoA/ROCK Signal Pathway. International Immunopharmacology, 46, 220-227. https://doi.org/10.1016/j.intimp.2017.03.007 |
[17] | Chen, J., Sun, L., Ding, G.B., et al. (2019) Oxygen-Glucose Deprivation/Reoxygenation Induces Human Brain Microvascular Endothelial Cell Hyperpermeability via VE-Cadherin Internalization: Roles of RhoA/ROCK2. Journal of Molecular Neuroscience, 69, 49-59. https://doi.org/10.1007/s12031-019-01326-8 |
[18] | Wang, H., Han, X., Wittchen, E.S., et al. (2016) TNF-Alpha Mediates Choroidal Neovascularization by Upregulating VEGF Expression in RPE through ROS-Dependent Be-ta-Catenin Activation. Molecular Vision, 22, 116-128. |
[19] | Liu, J., Zhang, N., Zhang, M., et al. (2021) N-Acetylserotonin Alleviated the Expression of Interleukin-1beta in Retinal Ischemia-Reperfusion Rats via the TLR4/NF-kappaB/NLRP3 Pathway. Experimental Eye Research, 208, Article ID: 108595. https://doi.org/10.1016/j.exer.2021.108595 |
[20] | Qi, Y., Zhao, M., Bai, Y., et al. (2014) Retinal Ische-mia/Reperfusion Injury Is Mediated by Toll-Like Receptor 4 Activation of NLRP3 Inflammasomes. Investigative Oph-thalmology and Visual Science, 55, 5466-5475.
https://doi.org/10.1167/iovs.14-14380 |
[21] | Guo, Z., Yu, S., Chen, X., et al. (2016) NLRP3 Is Involved in Ische-mia/Reperfusion Injury. CNS & Neurological Disorders—Drug Targets, 15, 699-712. https://doi.org/10.2174/1871527315666160321111829 |
[22] | Noma, H., Yasuda, K., Mimura, T., et al. (2020) Rela-tionship between Retinal Blood Flow and Cytokines in Central Retinal Vein Occlusion. BMC Ophthalmology, 20, 215. https://doi.org/10.1186/s12886-020-01486-x |
[23] | Noma, H., Mimura, T., Yasuda, K., et al. (2014) Role of Soluble Vascular Endothelial Growth Factor Receptors-1 and -2, Their Ligands, and Other Factors in Branch Retinal Vein Occlu-sion with Macular Edema. Investigative Ophthalmology and Visual Science, 55, 3878-3885. https://doi.org/10.1167/iovs.14-13961 |
[24] | Rezar-Dreindl, S., Eibenberger, K., Pollreisz, A., et al. (2017) Effect of Intravitreal Dexamethasone Implant on Intra-Ocular Cytokines and Chemokines in Eyes with Retinal Vein Occlusion. Acta Ophthalmologica, 95, e119-e127.
https://doi.org/10.1111/aos.13152 |