全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

More Erratic and More Extreme: Trends in Precipitation in the State of São Paulo, Brazil

DOI: 10.4236/ajcc.2023.121008, PP. 140-171

Keywords: Rainfall, Extremes, São Paulo, Gamma Distribution, Percentiles, Impacts

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study assessed changes in rainfall variability and the frequency of extreme events (very wet and very dry) in the state of S?o Paulo, Brazil, for a 40-year period that divided into two sub-groups: 1973-1992 (P1) and 1993-2012 (P2). Data of 79 rain gauge stations were selected to represent the different climatic and geomorphological domains of the state. The annual pattern was evaluated through the scale and the shape parameters of the gamma distribution and the 95th and the 5th percentiles thresholds, the latter also employed to evaluate the seasonal spatial patterns (rainy season, Oct.-Mar. and sub-humid to dry season, Apr.-Sep.). Results showed that the average precipitation was similar in P1 and P2, but S?o Paulo evolved to a pattern of increased irregularity in the rainfall distribution, with a rise of approximately 10% in the number of extremes between 1973 and 2012, especially in the very dry occurrences, and in the north and west of the state, which are the least rainy regions. Moreover, while 55% of the evaluated rain gauges recorded more extreme wet episodes in P2, 76% registered more dry extreme episodes in the same period. Some very dry or very wet events recorded after the 40-year period evaluated were discussed in terms of the associated weather patterns and their impacts on society and attested to the validity of the results found in the quantitative assessment. The qualitative analysis indicates that if the trends of more irregular distribution of rain and increase in extreme events persist, as pointed out by the gamma and percentile analyses, they would continue to bring serious effects on the natural and social systems in the state, which is the most populous and has the strongest and most diversified economy in Brazil.

References

[1]  Ahmed, S., Diffenbaugh, N. A., & Hertel, T. W. (2009). Climate Volatility Deepens Poverty Vulnerability in Developing Countries. Environmental Research Letters, 4, Article ID: 034004.
https://iopscience.iop.org/article/10.1088/1748-9326/4/3/034004
https://doi.org/10.1088/1748-9326/4/3/034004
[2]  Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke Jr., R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley, L. D., & Wallace, J. M. (2003). Abrupt Climate Change. Science, 299, 2005-2010.
https://doi.org/10.1126/science.1081056
[3]  Banholzer, S., Kossin, J., & Donner, S. (2014). The Impact of Climate Change on Natural Disasters. In A. Singh, & Z. Zommers (Eds.), Reducing Disaster: Early Warning Systems for Climate Change (pp. 21-49). Springer.
https://doi.org/10.1007/978-94-017-8598-3_2
[4]  Benevolenza, M. A., & DeRigne, L. A. (2019). The Impact of Climate Change and Natural Disasters on Vulnerable Populations: A Systematic Review of Literature. Journal of Human Behavior in the Social Environment, 29, 266-281.
https://doi.org/10.1080/10911359.2018.1527739
[5]  Ben-Gai, T., Bitan, A., Manes, A., Alpert, P., & Rubin, S. (1998). Spatial and Temporal Changes in Rainfall Frequency Distribution Patterns in Israel. Theoretical and Applied Climatology, 61, 177-190.
https://doi.org/10.1007/s007040050062
[6]  Botzen, W. J. W., Deschenes, O., & Sanders, M. (2019). The Economic Impacts of Natural Disasters: A Review of Models and Empirical Studies. Review of Environmental Economics and Policy, 13, 167-188.
https://doi.org/10.1093/reep/rez004
[7]  Brasil, Agência Nacional de águas (ANA) (2012). Superintendência da Gestão da Rede Hidrometeorológica. Orientações para consistência de dados pluviométricos. ANA, SGH.
https://arquivos.ana.gov.br/infohidrologicas/cadastro/OrientacoesParaConsistenciaDadosPluviometricos-VersaoJul12.pdf
[8]  Brasil, Agência Nacional de águas (ANA) (2022a). Monitor de Secas.
https://monitordesecas.ana.gov.br/mapa?mes=2&ano=2022
[9]  Brasil, Agência Nacional de águas (ANA). Monitor de Secas (2022b). Monitor de Secas registra secas severas em São Paulo.
https://agenciabrasil.ebc.com.br/radioagencia-nacional/geral/audio/2021-12/monitor-das-secas-registra--seca-severa-em-sao-paulo#:~:text=Publicado%20em%2010%2F12%2F2021, de%20sua%20%C3%A1rea%20com %20seca
[10]  Candido, D. H., & Nunes L. H. (2008). Influência da orografia na precipitação em uma porção do interior paulista. Geousp, 12, 8-27.
[11]  Cappelli, F., Costantini, V., & Consoli, D. (2021). The Trap of Climate Change-Induced “Natural” Disasters and Inequality. Global Environmental Change, 70, Article ID: 102329.
https://doi.org/10.1016/j.gloenvcha.2021.102329
[12]  Carvalho, L. M. V., & Jones, C. (2009). Zona de Convergência do Atlantico Sul. In I. F. A. Cavalcanti, N. de J. Ferreira, M. G. A. Justi da Silva, & M. A. F. Silva Dias (Eds.), Tempo e clima no Brasil (pp. 95-109). Oficina de Textos.
[13]  Carvalho, L. M. V., Jones, C., & Liebmann, B. (2004). The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. Journal of Climate, 17, 88-108.
https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2
[14]  Castellano, M. S., & Nunes, L. H. (2010). Avaliação espacio-temporal das precipitações extremas e seus impactos no meio urbano-um caso brasileiro. Territorium, 17, 35-44.
https://doi.org/10.14195/1647-7723_17_4
[15]  Cavalcanti, I. F. A., & Kousky, V. E. (2001). Drought in Brazil during Summer and Fall 2001 and Associated Atmospheric Circulation Features. Revista Climanálise, 2, 1-10.
http://climanalise.cptec.inpe.br/~rclimanl/revista/pdf/criseing.pdf
[16]  Coelho, C. A. S., Oliveira, C. P., Ambrizzi, T., Reboita, M. S., Carpenedo, C. B., Campos, J. L. P. S., Tomaziello, A. C. N., Pampuch, L. A., Custódio, M. de S., Dutra, L. M. M., Rocha, R. P., & Rebhein, A. (2016). The 2014 Southeast Brazil Austral Summer Drought: Regional Scale Mechanisms and Teleconnections. Climate Dynamics, 46, 3737-3753.
https://doi.org/10.1007/s00382-015-2800-1
[17]  Conti, J. B. (1975). Circulação secundária e efeitos orográficos na gênese das chuvas na região lesnordeste paulista (pp. 1-82). Série Teses e Monografias IGEOG-USP, No. 18.
[18]  Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M. N., & Xoplaki, E. (2018). Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nature Climate Change, 8, 972-980.
https://doi.org/10.1038/s41558-018-0299-2
[19]  Crutzen, P. L., & Stoermer, E. F. (2000). The “Anthropocene”. Global Change Newsletter, 41, 17-18.
http://www.igbp.net/download/18.316f18321323470177580001401/1376383088452/NL41.pdf
[20]  Cunningham, C. A., Cunha, A. P. M. do A., Brito, S. S. de B., Marengo, J. A., & Coutinho, M. (2017). Climate Change and Drought in Brazil. In V. Marchezini, B. Wisner, L. R. Londe, & S. M. Saito (Eds.), Reduction of Vulnerability to Disasters: From Knowledge to Action (pp. 361-375). Rima.
[21]  Donat, M. G., Angélil, O., & Ukkola, A. M. (2019). Intensification of Precipitation Extremes in the World’s Humid and Water-Limited Regions. Environmental Research Letters, 14, Article ID: 065003.
https://doi.org/10.1088/1748-9326/ab1c8e
[22]  Drummond, A. R. D. M., & Ambrizzi, T. (2005). The Role of SST on the South American Atmospheric Circulation during January, February and March 2001. Climate Dynamics, 24, 781-791.
https://doi.org/10.1007/s00382-004-0472-3
[23]  Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R., Moreira, L., & Gimeno, L. (2014). The Role of Amazon Basin Moisture on the Atmospheric Branch of the Hydrological Cycle: A Lagrangian Analysis. Hydrology and Earth System Sciences Discussions (Online), 11, 1023-1046.
https://hess.copernicus.org/articles/18/2577/2014/hess-18-2577-2014.html
https://doi.org/10.5194/hess-18-2577-2014
[24]  Dufek, A. S., & Ambrizzi, T. (2008). Precipitation Variability in São Paulo State, Brazil. Theoretical and Applied Climatology, 93, 167-178.
https://doi.org/10.1007/s00704-007-0348-7
[25]  Erhart, C., Thow, A., Bois, M., & Warhurst, A. (2009). Humanitarian Implications of Climate Change: Mapping Emerging Trends and Risk Hotspots. Climate Change Care International.
https://www.care.org/wp-content/uploads/2020/05/CC-2009-CARE_Human_Implications.pdf
[26]  Figuerôa, S. F. de M. (1985). Um século de pesquisas em geociências (96 p.). Instituto Geológico.
[27]  Fowler, H. J., Ali, H., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Cabi, N. S., Chan, S., Dale, M., Dunn, R. J. H., Ekström, M., Evans, J. P., Fosser, G., Golding, B., Guerreiro, S., Hegerl, G. C., Kahranan, A., Kendon, E. J., Lenderink, G., Lewis, E., Li, X., O’Gorman, P. A., Orr, H. G., Peat, K. L., Prein, A, F., Pritchard, D., Schär, C.; Sharma, A., Stott, P. A., Villalobos-Herrera, R., Villarini, G., Wasko, C., Wehner, M. F., Westra, S., & Whitford, A. (2021). Towards Advancing Scientific Knowledge of Climate Change Impacts on Short-Duration Rainfall Extremes. Philosophical Transactions of the Royal Society, 379, Article ID: 20190542.
https://doi.org/10.1098/rsta.2019.0542
[28]  Getirana, A., Libonati, R., & Cataldi, M. (2021). Brazil Is in Water Crisis—It Needs a Drought Plan. Nature, 600, 218-220.
https://doi.org/10.1038/d41586-021-03625-w
[29]  Gozzo, L. F., Palma, D. S., Custodio, M. S., & Machado, J. P. (2019). Climatology and Trend of Severe Drought Events in the State of Sao Paulo, Brazil, during the 20th Century. Atmosphere, 10, 16.
https://doi.org/10.3390/atmos10040190
[30]  Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Banglore, M., & Beaudet, C. (2020). From Poverty to Disaster and Back: A Review of the Literature. Economics of Disaster and Climate Change, 4, 223-247.
https://doi.org/10.1007/s41885-020-00060-5
[31]  Husak, G. J., Michaelsen, J., & Funk, C. (2007). Use of the Gamma Distribution to Represent Monthly Rainfall in Africa for Drought Monitoring Applications. International Journal of Climatology, 27, 935-944.
https://doi.org/10.1002/joc.1441
[32]  IBGE (Instituto Brasileiro de Geografia e Estatística).
https://www.ibge.gov.br/en/cities-and-states.html
[33]  Instituto Florestal (2020). Inventário florestal do estado de São Paulo. Mapeamento da cobertura vegetal nativa.
https://smastr16.blob.core.windows.net/home/2020/07/inventarioflorestal2020.pdf
[34]  InvestSP (Investment Promotion Agency) (2022).
https://www.en.investe.sp.gov.br/why-sao-paulo
[35]  IPCC (Intergovernmental Panel on Climate Change) (2012). IPCC 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press.
https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation
[36]  IPCC (Intergovernmental Panel on Climate Change) (2021). IPCC 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report_smaller.pdf
[37]  Ison, N. T., Feyerherm, A. M., & Dean Bark, L. (1971). Wet Period Precipitation and the Gamma Distribution. Journal of Applied Meteorology, 10, 658-665.
https://doi.org/10.1175/1520-0450(1971)010<0658:WPPATG>2.0.CO;2
[38]  Jackson, I. (1969). The Persistence of Rainfall Gradients over Small Areas of Uniform Relief. East African Geographical Review, 7, 37-43.
[39]  Juras, J. (1994). Some Common Features of Probability Distributions for Precipitation. Theoretical and Applied Climatology, 49, 69-76.
https://doi.org/10.1007/BF00868191
[40]  Kayano, M., & Moura, A. D. (1986). O El Niño de 1982-83 e a precipitação sobre a América do Sul. Revista Brasileira de Geofísica, 4, 201-214.
https://doi.org/10.22564/rbgf.v4i2.1055
[41]  Kirchmeier-Young, M. C., & Zhang, X. (2020). Human Influence Has Intensified Extreme Precipitation in North America. PNAS, 127, 13309-13313.
https://doi.org/10.1073/pnas.1921628117
[42]  Kousky, V. E., & Cavalcanti, I. F. A. (1984). Eventos Oscilação do Sul-El Niño: Características, evolução e anomalias de precipitação. Ciência e Cultura, 36, 1188-1899.
[43]  Li, W. Y. et al. (2019). Annual Precipitation and Daily Extreme Precipitation Distribution: Possible Trends from 1960 to 2010 in Urban Areas of China. Geomatics, Natural Hazards and Risk, 10, 1694-1711.
https://doi.org/10.1080/19475705.2019.1609604
[44]  Liang, L., Zhao, L., Gong, Y., Tian, F., & Wang, Z. (2012). Probability Distribution of Summer Daily Precipitation in the Huaihe Basin of China Based on Gamma Distribution. Journal of Meteorological Research, 26, 72-84.
https://doi.org/10.1007/s13351-012-0107-2
[45]  Liebmann, B., Jones, C., & Carvalho, L. M. V. de (2001). Interannual Variability of Daily Extreme Precipitation Events in the State of São Paulo, Brazil. Journal of Climate, 14, 208-218.
https://doi.org/10.1175/1520-0442(2001)014<0208:IVODEP>2.0.CO;2
[46]  Machado, C., Campos, T. L. O. B., Rafee, S. A. A., Marins, J. A., & Grimm, A. M. (2021). Extreme Rainfall Events in the Macrometropolis of São Paulo: Trends and Connection with Climate Oscillations. Journal of Applied Meteorology and Climatology, 60, 661-675.
https://doi.org/10.1175/JAMC-D-20-0173.1
[47]  Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N., & Hall, A. (2021). Anthropogenic Influence on Extreme Precipitation over Global Land Areas Seen in Multiple Observational Datasets. Nature Communications, 12, 3944.
https://doi.org/10.1038/s41467-021-24262-x
[48]  Malvestio, L. M. (2013). Variabilidade da precipitação pluviométrica da região sudeste do Brasil no período chuvoso e suas consequências ambientais. Ms.D. Dissertation, Universidade Estadual de Campinas.
[49]  Marengo, J. A., & Alves, L. M. (2015). Crise hídrica em São Paulo em 2014: Seca e desmatamento. Geousp-Espaço e Tempo (Online), 19, 485-494.
https://doi.org/10.11606/issn.2179-0892.geousp.2015.100879
[50]  Marengo, J. A., Ambrizi, T., Alves, L. M., Barreto, N. J. C., Reboita, M. S., & Ramos, A. M. (2020). Changing Trends in Rainfall Extremes in the Metropolitan Area of São Paulo: Causes and Impacts. Frontier Climate Change, 2, Article No. 3.
https://doi.org/10.3389/fclim.2020.00003
[51]  Marengo, J. A; Nobre, C. A., Seluchi, M. E., Cuartas, A., Alves, L. M., Mendiondo, E. M., Obregón, G., & Sampaio, G. (2015). A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP, 106, 31-44.
https://doi.org/10.11606/issn.2316-9036.v0i106p31-44
[52]  Markovic, R. D. (1965). Probability Functions of Best Fit to Distribution of Annual Precipitation and Runoff. Hydrology Paper 8, Colorado State University.
https://mountainscholar.org/bitstream/handle/10217/61285/HydrologyPapers_n8.pdf
[53]  Martinelli, M. (2009). Relevo do estado de São Paulo. Confins Online, 7.
https://doi.org/10.4000/confins.6168
[54]  Martinez-Villalobos, C., & Neelin, D. (2019). Why Do Precipitation Intensities Tend to Follow Gamma Distributions? Journal of the Atmospheric Sciences, 76, 3611-3631.
https://doi.org/10.1175/JAS-D-18-0343.1
[55]  May, W. (2004). Variability and Extremes of Daily Rainfall during the Indian Summer Monsoon in the Period 1901-1989. Global and Planetary Change, 44, 83-105.
https://doi.org/10.1016/j.gloplacha.2004.06.007
[56]  Michaelides, S. C., Tymvios, F. S., & Michaelidou, T. (2009). Spatial and Temporal Characteristics of the Annual Rainfall Frequency Distribution in Cyprus. Atmospheric Research, 94, 606-615.
https://doi.org/10.1016/j.atmosres.2009.04.008
[57]  Monteiro, C. A. F. (1973). A dinamica climática e as chuvas no estado de São Paulo: Estudo geográfico sob forma de atlas. Laboratório de Climatologia do Instituto de Geografia da Universidade de São Paulo.
[58]  Monteiro, C. A. F., Markus, E., & Gomes, K. M. F. (1971). Comparação da pluviosidade nos estados de São Paulo e Rio Grande do Sul nos invernos de 1957 e 1963. Climatologia, 5, 1-5.
[59]  Moreira, F. da C., & Almeida, J. C. M. M. (2021). Logística humanitária no desastre ocorrido na cidade de Guarujá dia 02 e 03 de março de 2020: Estudo de caso. Anais Fateclog Gestão da cadeia de suprimentos no agronegócio: desafios e oportunidades no contexto atual, Brasil, 12.
https://fateclog.com.br/anais/2021/135-133-1-RV.pdf
[60]  Nery, J. T., Vargas, W. M., & Martins, M. (1999). Estrutura da precipitação do estado de São Paulo. Revista Brasileira de Recursos Hídricos, 4, 51-61.
https://abrh.s3.sa-east-1.amazonaws.com/Sumarios/47/1ef9379e65fdc0b79f888efc439d6e52_ 251c83d6d80cf15f1e6855f7ca1a4d24.pdf
https://doi.org/10.21168/rbrh.v4n4.p51-61
[61]  Nobre, C. A., Marengo, J. A., Seluchi, M. E., Cuartas, L. A., & Alves, L. M. (2016). Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. Journal of Water Resource and Protection, 8, 252-262.
https://doi.org/10.4236/jwarp.2016.82022
[62]  Nobre, C. A., Young, A. F., Saldiva, P., Marengo, J. A., Nobre, A. D., Alves, J. R., Silva, G. C. M., & Lombardo, M. (2011). Vulnerabilidades das megacidades brasileiras às mudanças climáticas: Região Metropolitana de São Paulo (285 p.). Relatório Final.
[63]  Nunes, L. H. (1997). Distribuição espaço-temporal da pluviosidade no estado de São Paulo: Variabilidade, tendências, processos intervenientes. Ph.D. Thesis, Universidade de São Paulo.
[64]  Nunes, L. H. (2009). Compreensões e ações frente aos padrões espaciais e temporais de riscos e desastres. Territorim, 16, 179-189.
https://doi.org/10.14195/1647-7723_16_18
[65]  Orlowsky, B., & Seneviratne, S. I. (2012). Global Changes in Extreme Events: Regional and Seasonal Dimension. Climatic Change, 110, 669-696.
https://doi.org/10.1007/s10584-011-0122-9
[66]  Paramasivam, C. R., & Venkatramanan, S. (2019). An Introduction to Various Spatial Analysis Techniques. In V. Senapathi, P. M. Viswanathan, & S. Y. Chung (Eds.), GIS and Geostatistical Techniques for Groundwater Sciences (pp. 23-30). Elsevier.
https://doi.org/10.1016/B978-0-12-815413-7.00003-1
[67]  Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., & Sanderson, B. M. (2017). Precipitation Variability Increases in a Warmer Climate. Nature Scientific Reports, 7, 17966.
https://doi.org/10.1038/s41598-017-17966-y
[68]  Portal CNN (2022). Número de mortes causadas pelas chuvas em São Paulo aumenta para 34.
https://www.cnnbrasil.com.br/nacional/numero-de-mortes-causadas-pelas-chuvas-em-sao-paulo-aumenta/#:~:text=O%20n%C3%BAmero%20de%20mortes%20em,Regi%C3%A3o%20Metropolitana%20de%20S%C3%A3o%20Paulo
[69]  Portal G1 Notícias (2019). SP registra em março mais de 90% do volume de chuva esperado para o mês, diz Prefeitura.
https://g1.globo.com/sp/sao-paulo/noticia/2019/03/11/choveu-em-uma-noite-80-esperado-para-o-mes-diz-prefeito-em-exercicio-de-sp-eduardo-tuma.ghtml
[70]  Portal G1 Notícias (2020a). Volume de chuva em Guarujá foi equivalente a duas usinas de Itaipu.
https://g1.globo.com/sp/santos-regiao/noticia/2020/03/12/volume-de-chuva-em-guaruja-foi-equivalente-a-duas-usinas-de-itaipu.ghtml
[71]  Portal G1 Notícias (2020b). No Sudeste, estado de SP tem mais registros de eventos extremos em novo padrão de chuvas, diz Inpe.
https://g1.globo.com/natureza/noticia/2020/02/11/no-sudeste-estado-de-sp-tem-mais-registros-de-eventos-extremos-em-novo-padrao-de-chuvas-diz-inpe.ghtml
[72]  Portal G1 Notícias (2022). Mais de 170 pessoas deixam suas casas após chuvas em Ubatuba; temporal também afeta rodovias.
https://g1.globo.com/sp/vale-do-paraiba-regiao/noticia/2022/04/04/mais-de-170-pessoas-deixam-suas-casas-apos-chuvas-em-ubatuba-temporal-tambem-afeta-rodovias.ghtml
[73]  Portal R7 Notícias (2013). Chuvas de verão deixam dobro de mortos em SP em 2013.
https://noticias.r7.com/sao-paulo/chuvas-de-verao-deixam-dobro-de-mortos-em-sp-em-2013-30032013?amp
[74]  Rampazo, N. A. M., & Nunes, L. H. (2017). Tendências da precipitação diária no estado de São Paulo a partir do índice de Concentração. In A. Perez Filho, & R. R. Amorim (Eds.), Os desafios da geografia física na fronteira do conhecimento (pp. 2454-2466). Campinas.
https://doi.org/10.20396/sbgfa.v1i2017.2312
[75]  Rodrigo, F. S. (2010). Changes in the Probability of Extreme Daily Precipitation Observed from 1951 to 2002 in the Iberian Peninsula. International Journal of Climatology, 30, 1512-1525.
https://doi.org/10.1002/joc.1987
[76]  Rodrigues, R. R., Taschetto, A. S., Gupta, A. S., & Foltz, G. F. (2019). Common Cause for Severe Droughts in South America and Marine Heatwaves in the South Atlantic. Nature Geoscience, 12, 620-626.
https://doi.org/10.1038/s41561-019-0393-8
[77]  Romero-Lankao, P. (2011). Urban Responses to Climate Change in Latin America: Reasons, Challenges and Opportunities. Architectural Design, 81, 76-79.
https://doi.org/10.1002/ad.1242
[78]  Rosa, E. B., Pezzi, L. P., Quadro, M. F. L., & Brunsell, N. (2020). Automated Detection Algorithm for SACZ, Oceanic SACZ, and Their Climatological Features. Frontiers in Environmental Sciences, 8, 18.
https://doi.org/10.3389/fenvs.2020.00018
[79]  Salvi, L. L. (1984). Tipologia climática no estado de São Paulo segundo técnicas de quantificação. Revista do Departamento de Geografia, 3, 37-61.
https://www.revistas.usp.br/rdg/article/view/47085/50806
https://doi.org/10.7154/RDG.1984.0003.0003
[80]  Sant’Anna Neto, J. L. (1997). A tendência da pluviosidade no estado de São Paulo no período de 1941 a 1993. Boletim Climatológico, 2, 1-10.
[81]  Santos, M. J. Z. dos (1996). Mudanças climáticas no estado de São Paulo. Geografia, 21, 111-171.
https://www.periodicos.rc.biblioteca.unesp.br/index.php/ageteo/article/view/14876
[82]  Schroeder, R. (1956). Distribuição e curso anual das precipitações no estado de São Paulo. Bragantia, 15, 192-249.
https://doi.org/10.1590/S0006-87051956000100018
https://www.scielo.br/j/brag/a/nJYMgQRfMYBzCfnDhZkzFQp/?lang=pt
[83]  Setzer, J. (1972). Atlas pluviométrico do estado de São Paulo. Secretaria de Obras e do Meio Ambiente, CTH/DAEE. São Paulo.
[84]  Silva, R. C. da (n.d) Relevo de São Paulo.
https://www.infoescola.com/geografia/relevo-de-sao-paulo
[85]  Sistema de Informações para Gerenciamento de Recursos Hídricos do Estado de São Paulo, Banco de Dados Hidrológicos, DAEE.
http://www.hidrologia.daee.sp.gov.br
[86]  Sugahara, S. (1991). Flutuações interanuais, sazonais e intrasazonais da precipitação no Estado de São Paulo. Ph.D. Thesis, Universidade de São Paulo.
[87]  Tabari, H. (2020). Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Scientific Reports, 10, Article No. 13768.
https://doi.org/10.1038/s41598-020-70816-2
[88]  Tebaldi, C., Hayhoe, K., Arblaster, J. M., & Meehl G. A. (2006). Going to Extremes, an Intercomparison of Model Simulated Historical and Future Changes in Extreme Events. Climate Change, 79, 185-211.
https://doi.org/10.1007/s10584-006-9051-4
[89]  Thom, H. C. (1958). A Note on the Gamma Distribution. Monthly Weather Review, 86, 117-122.
https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2
[90]  Victor, M. A. de M., Cavalli, A. C., Guillaumon, J. R., & Serra Filho, R. (2005). Cem anos de devastação: Revisitada 30 anos depois. Ministério do Meio Ambiente, Diretoria do Programa Nacional de Conservação da Biodiversidade (Brasil).
http://www.dokuwiki.lcf.esalq.usp.br/pedro/lib/exe/fetch.php?media=ensino:graduacao: cem_anos_de_devastacao_-_m._vitor_2005_1_.pdf
[91]  Wilks, D. S. (1995). Statistical Methods in the Atmospheric Sciences: An Introduction (467 p.). Academic Press.
[92]  WMO (World Meteorological Organization) (2021a). Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970-2019). WMO 1267.
https://library.wmo.int/doc_num.php?explnum_id=10902
[93]  WMO (World Meteorological Organization) (2021b). State of the Climate in Latin America and the Caribbean 2020. WMO 1272.
https://reliefweb.int/report/world/state-climate-latin-america-and-caribbean-2020
[94]  Xavier, T. M. B. S., Xavier, A. F. S., & Alves, J. M. B. (2007). Quantis e eventos extremos: aplicações em ciências da terra e ambientais. RDS.
[95]  Zilli, M. T., Carvalho, L. M. V., Liebmann, B., & Silva-Dias, M. A. (2016). A Comprehensive Analysis of Trends in Extreme Precipitation over Southeastern Coast of Brazil. International Journal of Climatology, 37, 2269-2279.
https://doi.org/10.1002/joc.4840
[96]  Zolina, O., Simmer, C., Kapala, A., Shabanov, P., Becker, P., Mächel, H., Gulev, S., & Groisman, P. (2014). Precipitation Variability and Extremes in Central Europe. Bulletin of the American Meteorological Society, 95, 995-1002.
https://doi.org/10.1175/BAMS-D-12-00134.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133