全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肥胖合并糖尿病中脂肪组织巨噬细胞极化相关信号通路研究进展
Advances in Macrophage Polarization-Related Signaling Pathways in Adipose Tissue in Obesity Combined with Diabetes

DOI: 10.12677/ACM.2023.133489, PP. 3431-3437

Keywords: 肥胖,糖尿病,脂肪组织巨噬细胞,极化
Obesity
, Diabetes, Adipose Tissue Macrophages, Polarization

Full-Text   Cite this paper   Add to My Lib

Abstract:

脂肪组织中过多的脂质积聚,既是肥胖的根源,也可能是慢性局部炎症的起因和结果,最近的研究表明,巨噬细胞可诱导许多其他特异性免疫疾病,因此在脂肪组织巨噬细胞活化过程中,巨噬细胞的招募、极化都是潜在的干预靶点。本文对脂肪组织慢性低级别炎症的发病机制及相关信号转导通路,包括AMPK通路,JNK信号通路,以及Notch信号通路进行了综述。为将来对慢性疾病如胰岛素抵抗、2型糖尿病的治疗干预提供一些思路和新的治疗方法。
Excessive lipid accumulation in adipose tissue is both a root cause of obesity and consequence of chronic local inflammation. Recent studies have shown that macrophages can induce specific im-mune characteristics. The process of macrophage activation in adipose tissue all are the potential targets for intervention, such as macrophages recruitment and polarization. This paper reviewed the pathogenesis of chronic low-grade inflammation in adipose tissue and related signal transduc-tion pathways, including AMPK pathway, JNK signaling pathway and Notch signaling pathway. It provides some ideas and new therapeutic methods for the treatment of chronic diseases such as insulin resistance and type 2 diabetes in the future.

References

[1]  Kelly, T., Yang, W., Chen, C.-S., Reynolds, K. and He, J. (2008) Global Burden of Obesity in 2005 and projections to 2030. International Journal of Obesity, 32, 1431-1437.
https://doi.org/10.1038/ijo.2008.102
[2]  Qatanani, M. and Lazar, M.A. (2007) Mechanisms of Obesity-Associated Insulin Resistance: Many Choices on the Menu. Genes & De-velopment, 21, 1443-1455.
https://doi.org/10.1101/gad.1550907
[3]  Chan, P.-C., et al. (2018) Targeted Inhibition of CD74 Attenuates Adipose COX-2-MIF-Mediated M1 Macrophage Polarization and Retards Obesity-Related Adipose Tissue Inflammation and Insulin Resistance. Clinical Science, 132, 1581-1596.
https://doi.org/10.1042/CS20180041
[4]  Ouchi, N., Parker, J.L., Lugus, J.J. and Walsh, K. (2011) Adipokines in Inflammation and Metabolic Disease. Nature Reviews Immunology, 11, 85-97.
https://doi.org/10.1038/nri2921
[5]  Weisberg, S.P., et al. (2003) Obesity Is Associated with Macrophage Accu-mulation in Adipose Tissue. Journal of Clinical Investigation, 112, 1796-1808.
https://doi.org/10.1172/JCI19246
[6]  Hotamisligil, G.S. (2017) Foundations of Immunometabolism and Implica-tions for Metabolic Health and Disease. Immunity, 47, 406-420.
https://doi.org/10.1016/j.immuni.2017.08.009
[7]  Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity Induces a Phenotypic Switch in Adipose Tissue Macrophage Polarization. Journal of Clinical Investigation, 117, 175-184.
https://doi.org/10.1172/JCI29881
[8]  Lee, Y.H., et al. (2005) Microarray Profiling of Isolated Ab-dominal Subcutaneous Adipocytes from Obese vs Non-Obese Pima Indians: Increased Expression of Inflamma-tion-Related Genes. Diabetologia, 48, 1776-1783.
https://doi.org/10.1007/s00125-005-1867-3
[9]  Mueller, C.K. and Schultze-Mosgau, S. (2011) Histomorphomet-ric Analysis of the Phenotypical Differentiation of Recruited Macrophages Following Subcutaneous Implantation of an Allogenous Acellular Dermal Matrix. International Journal of Oral & Maxillofacial Surgery, 40, 401-407.
https://doi.org/10.1016/j.ijom.2010.10.025
[10]  Fujiu, K., Manabe, I. and Nagai, R. (2011) Renal Collecting Duct Epithelial Cells Regulate Inflammation in Tubulointerstitial Damage in Mice. Journal of Clinical Investigation, 121, 3425-3441.
https://doi.org/10.1172/JCI57582
[11]  Galès, A., et al. (2010) PPARγ Controls Dectin-1 Expression Required for Host Antifungal Defense against Candida albicans. PLOS Pathogens, 6, e1000714.
https://doi.org/10.1371/journal.ppat.1000714
[12]  Calandra, T., Bernhagen, J., Mitchell, R.A. and Bucala, R. (1994) The Macrophage Is an Important and Previously Unrecognized Source of Macrophage Migration Inhibitory Factor. Journal of Experimental Medicine, 179, 1895-1902.
https://doi.org/10.1084/jem.179.6.1895
[13]  Finucane, O.M., Reynolds, C.M., McGillicuddy, F.C. and Roche, H.M. (2012) Insights into the Role of Macrophage Migration Inhibitory Factor in Obesity and Insulin Resistance. Pro-ceedings of the Nutrition Society, 71, 622-633.
https://doi.org/10.1017/S0029665112000730
[14]  Ghanim, H., et al. (2004) Circulating Mononuclear Cells in the Obese Are in a Proinflammatory State. Circulation, 110, 1564-1571.
https://doi.org/10.1161/01.CIR.0000142055.53122.FA
[15]  Dandona, P., et al. (2004) Increased Plasma Concen-tration of Macrophage Migration Inhibitory Factor (MIF) and MIF mRNA in Mononuclear Cells in the Obese and the Suppressive Action of Metformin. The Journal of Clinical Endocrinology & Metabolism, 89, 5043-5047.
https://doi.org/10.1210/jc.2004-0436
[16]  Sakaue, S., et al. (2006) Promoter Polymorphism in the Macrophage Migration Inhibitory Factor Gene Is Associated with Obesity. International Journal of Obesity, 30, 238-242.
https://doi.org/10.1038/sj.ijo.0803148
[17]  Vozarova, B., et al. (2002) Plasma Concentrations of Macrophage Mi-gration Inhibitory Factor Are Elevated in Pima Indians Compared to Caucasians and Are Associated with Insulin Re-sistance. Diabetologia, 45, 1739-1741.
https://doi.org/10.1007/s00125-002-0896-4
[18]  Church, T.S., et al. (2005) Obesity, Macrophage Migration Inhib-itory Factor, and Weight Loss. International Journal of Obesity, 29, 675-681.
https://doi.org/10.1038/sj.ijo.0802942
[19]  Herder, C., et al. (2008) Effect of Macrophage Migration Inhibitory Factor (MIF) Gene Variants and MIF Serum Concentrations on the Risk of Type 2 Diabetes: Results From the MONICA/KORA Augsburg Case-Cohort Study, 1984-2002. Diabetologia, 51, 276-284.
https://doi.org/10.1007/s00125-007-0800-3
[20]  Aslani, S., Hossein-Nezhad, A., Maghbooli, Z., Mirzaei, K. and Karimi, F. (2011) Genetic Variation in Macrophage Migration Inhibitory Factor Associated with Gestational Diabetes Mellitus and Metabolic Syndrome. Hormone and Metabolic Research, 43, 557-561.
https://doi.org/10.1055/s-0031-1275706
[21]  Yilmaz, ?., et al. (2012) Macrophage Migration-Inhibitory Factor Is Elevated in Pregnant Women with Gestational Diabetes Mellitus. Gynecological Endocrinology, 28, 76-79.
https://doi.org/10.3109/09513590.2011.588757
[22]  Stark, R., Ashley, S.E. and Andrews, Z.B. (2013) AMPK and the Neuroendocrine Regulation of Appetite and Energy Expenditure. Molecular and Cellular Endocrinology, 366, 215-223.
https://doi.org/10.1016/j.mce.2012.06.012
[23]  Cantó, C. and Auwerx, J. (2010) AMP-Activated Protein Kinase and Its Downstream Transcriptional Pathways. Cellular and Molecular Life Sciences, 67, 3407-3423.
https://doi.org/10.1007/s00018-010-0454-z
[24]  Steinberg, G.R. and Kemp, B.E. (2009) AMPK in Health and Disease. Physiological Reviews, 89, 1025-1078.
https://doi.org/10.1152/physrev.00011.2008
[25]  Salminen, A., Hyttinen, J.M. and Kaarniranta, K. (2011) AMP-Activated Protein Kinase Inhibits NF-κB Signaling and Inflammation: Impact on Healthspan and Lifespan. Journal of Molecular Medicine, 89, 667-676.
https://doi.org/10.1007/s00109-011-0748-0
[26]  Lage, R., Diéguez, C., Vidal-Puig, A. and López, M. (2008) AMPK: A Metabolic Gauge Regulating Whole-Body Energy Homeostasis. Trends in Molecular Medicine, 14, 539-549.
https://doi.org/10.1016/j.molmed.2008.09.007
[27]  Park, S., Kim, D.S., Kang, S. and Shin, B.K. (2014) Chronic Activation of Central AMPK Attenuates Glucose-Stimulated Insulin Secretion and Exacerbates Hepatic Insulin Re-sistance in Diabetic Rats. Brain Research Bulletin, 108, 18-26.
https://doi.org/10.1016/j.brainresbull.2014.08.002
[28]  Maury, E. and Brichard, S.M. (2010) Adipokine Dysregu-lation, Adipose Tissue Inflammation and Metabolic Syndrome. Molecular and Cellular Endocrinology, 314, 1-16.
https://doi.org/10.1016/j.mce.2009.07.031
[29]  Steinberg, G.R., et al. (2006) Tumor Necrosis Factor α-Induced Skeletal Muscle Insulin Resistance Involves Suppression of Amp-Kinase Signaling. Cell Metabolism, 4, 465-474.
https://doi.org/10.1016/j.cmet.2006.11.005
[30]  Lan, F., Cacicedo, J.M., Ruderman, N. and Ido, Y. (2008) SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1. Possible Role in AMP-Activated Protein Kinase Activation. Journal of Biological Chemistry, 283, 27628-27635.
https://doi.org/10.1074/jbc.M805711200
[31]  Zhou, D., et al. (2014) Macrophage Polarization and Function with Emphasis on the Evolving Roles of Coordinated Regulation of Cellular Signaling Pathways. Cellular Signalling, 26, 192-197.
https://doi.org/10.1016/j.cellsig.2013.11.004
[32]  Dhanasekaran, D.N. and Reddy, E.P. (2008) JNK Signaling in Apoptosis. Oncogene, 27, 6245-6251.
https://doi.org/10.1038/onc.2008.301
[33]  Tesz, G.J., et al. (2007) Tumor Necrosis Factor α (TNFα) Stimulates Map4k4 Expression through TNFα Receptor 1 Signaling to c-Jun and Activating Transcription Factor 2. Journal of Bio-logical Chemistry, 282, 19302-19312.
https://doi.org/10.1074/jbc.M700665200
[34]  Radtke, F., MacDonald, H.R. and Tacchini-Cottier, F. (2013) Regu-lation of Innate and Adaptive Immunity by Notch. Nature Reviews Immunology, 13, 427-437.
https://doi.org/10.1038/nri3445
[35]  Artavanis-Tsakonas, S., Rand, M.D. and Lake, R.J. (1999) Notch Signaling: Cell Fate Control and Signal Integration in Development. Science, 284, 770-776.
https://doi.org/10.1126/science.284.5415.770
[36]  Leidi, M., et al. (2009) M2 Macrophages Phagocytose Rituxi-mab-Opsonized Leukemic Targets More Efficiently than M1 Cells in Vitro. The Journal of Immunology, 182, 4415-4422.
https://doi.org/10.4049/jimmunol.0713732
[37]  Sica, A., Schioppa, T., Mantovani, A. and Allavena, P. (2006) Tumour-Associated Macrophages Are a Distinct M2 Polarised Population Promoting Tumour Progression: Potential Targets of Anti-Cancer Therapy. European Journal of Cancer, 42, 717-727.
https://doi.org/10.1016/j.ejca.2006.01.003
[38]  Ohishi, K., et al. (2000) Monocytes Express High Amounts of Notch and Undergo Cytokine Specific Apoptosis Following Interaction with the Notch Ligand, Delta-1. Blood, 95, 2847-2854.
https://doi.org/10.1182/blood.V95.9.2847.009k19_2847_2854
[39]  Kopan, R. and Ilagan, M.X. (2009) The Ca-nonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell, 137, 216-233.
https://doi.org/10.1016/j.cell.2009.03.045
[40]  Bi, P., et al. (2014) Inhibition of Notch Signaling Promotes Brown-ing of White Adipose Tissue and Ameliorates Obesity. Nature Medicine, 20, 911-918.
https://doi.org/10.1038/nm.3615
[41]  Xu, H., et al. (2012) Notch-RBP-J Signaling Regulates the Transcription Factor IRF8 to Promote Inflammatory Macrophage Polarization. Nature Immunology, 13, 642-650.
https://doi.org/10.1038/ni.2304
[42]  Wang, Y.-C., et al. (2010) Notch Signaling Determines the M1 versus M2 Polarization of Macrophages in Antitumor Immune Responses. Cancer Research, 70, 4840-4849.
https://doi.org/10.1158/0008-5472.CAN-10-0269
[43]  Akbar, D.H. (2003) Effect of Metformin and Sulfonylurea on C-Reactive Protein Level in Well-Controlled Type 2 Diabetics with Metabolic Syndrome. Endocrine, 20, 215-218.
https://doi.org/10.1385/ENDO:20:3:215

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133