全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

降低致动脉粥样硬化性脂蛋白的VLDLR基因治疗研究
Study on VLDLR Gene Therapy for Reducing Atherogenic Lipoprotein

DOI: 10.12677/ACM.2023.133488, PP. 3424-3430

Keywords: 极低密度脂蛋白受体(VLDLR),甘油三酯(TG),基因治疗
Very Low Density Lipoprotein Receptor (VLDLR)
, Triacylglycerol (TG), Gene Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前大多数心血管疾病(CVD)的治疗和管理策略都围绕低密度脂蛋白胆固醇(LDL-C),但越来越多的研究发现,将LDL-C水平控制在目标靶点值后,部分患者心血管不良事件仍然存在,并将残余CVD风险归因于高甘油三酯(TG)和高脂蛋白(a)。VLDLR能够结合和内吞含apoE的富含TG的脂蛋白以及Lp(a),但它在肝脏中通常不表达。靶向肝VLDLR表达有可能促进这些致动脉粥样化颗粒的清除。这篇综述概述了VLDLR的功能以及开发靶向肝VLDLR表达的基因药物的潜力。
At present, most treatment and management strategies for cardiovascular disease (CVD) revolve around low density lipoprotein cholesterol (LDL-C). However, more and more studies have found that after the level of LDL-C is controlled at the target value, cardiovascular adverse events still exist in some patients, and the residual CVD risk is attributed to high triacylglycerol (TG) and high lipo-protein(a). VLDLR can bind to and swallow TG-rich lipoprotein and Lp(a) containing apoE, but it is usually not expressed in the liver. The expression of VLDLR in targeted liver may promote the clearance of these atherogenic granules. This review outlines the function of VLDLR and the poten-tial for developing gene drugs targeting liver VLDLR expression.

References

[1]  顾景范. 《中国居民营养与慢性病状况报告(2015)》解读[J]. 营养学报, 2016, 38(6): 525-529.
[2]  Moran, A., Gu, D., Zhao, D., et al. (2010) Future Cardiovascular Disease in China: Markov Model and Risk Factor Scenario Projections from the Coronary Heart Disease Policy Model-China. Circulation Cardiovascular Quality and Outcomes, 3, 243-252.
https://doi.org/10.1161/CIRCOUTCOMES.109.910711
[3]  诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版) [J]. 中华健康管理学杂志, 2017, 16(1): 7-28.
[4]  Liu, H.H., Cao, Y.X., Jin, J.L., et al. (2020) Predicting Cardiovascular Outcomes by Baseline Lipoprotein(a) Concentrations: A Large Cohort and Long-Term Follow-Up Study on Real-World Patients Receiving Percutaneous Coronary Intervention. Journal of the American Heart Association, 9, e014581.
https://doi.org/10.1161/JAHA.119.014581
[5]  Ginsberg, H.N., Packard, C.J., Chapman, M.J., et al. (2021) Triglyceride-Rich Lipoproteins and Their Remnants: Metabolic Insights, Role in Atherosclerotic Car-diovascular Disease, and Emerging Therapeutic Strategies—A Consensus Statement from the European Atherosclerosis Society. European Heart Journal, 42, 4791-4806.
https://doi.org/10.1093/eurheartj/ehab551
[6]  Gill, P.K., Dron, J.S. and Hegele, R.A. (2021) Genetics of Hypertri-glyceridemia and Atherosclerosis. Current Opinion in Cardiology, 36, 264-271.
https://doi.org/10.1097/HCO.0000000000000839
[7]  Ballantyne, C.M., Olsson, A.G., Cook, T.J., et al. (2001) Influence of Low High-Density Lipoprotein Cholesterol and Elevated Triglyceride on Coronary Heart Disease Events and Response to Simvastatin Therapy in 4S. Circulation, 104, 3046-3051.
https://doi.org/10.1161/hc5001.100624
[8]  Miller, M., Cannon, C.P., Murphy, S.A., et al. (2008) Impact of Tri-glyceride Levels beyond Low-Density Lipoprotein Cholesterol after Acute Coronary Syndrome in the PROVE IT-TIMI 22 Trial. Journal of the American College of Cardiology, 51, 724-730.
https://doi.org/10.1016/j.jacc.2007.10.038
[9]  Marston, N.A., Giugliano, R.P., Im, K., et al. (2019) Association between Triglyceride Lowering and Reduction of Cardiovascular Risk across Multiple Lipid-Lowering Therapeutic Clas-ses: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Circulation, 140, 1308-1317.
https://doi.org/10.1161/CIRCULATIONAHA.119.041998
[10]  Das Pradhan, A., Glynn, R.J., Fruchart, J.C., et al. (2022) Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. The New England Journal of Medicine, 387, 1923-1934.
https://doi.org/10.1056/NEJMoa2210645
[11]  Virani, S.S. (2022) The Fibrates Story—A Tepid End to a Prominent Drug. The New England Journal of Medicine, 387, 1991-1992.
https://doi.org/10.1056/NEJMe2213208
[12]  Nurmohamed, N.S., Dallinga-Thie, G.M. and Stroes, E.S.G. (2020) Targeting apoC-III and ANGPTL3 in the Treatment of Hypertriglyceridemia. Expert Review of Cardiovascular Therapy, 18, 355-361.
https://doi.org/10.1080/14779072.2020.1768848
[13]  Burdett, H. (2016) Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. Annals of Clinical Biochemistry, 53, 415.
https://doi.org/10.1177/0004563216632658
[14]  Sahebkar, A., Reiner, ?., Simental-Mendía, L.E., et al. (2016) Ef-fect of Extended-Release Niacin on Plasma Lipoprotein(a) Levels: A Systematic Review and Meta-Analysis of Random-ized Placebo-Controlled Trials. Metabolism: Clinical and Experimental, 65, 1664-1678.
https://doi.org/10.1016/j.metabol.2016.08.007
[15]  O’Donoghue, M.L., Fazio, S., Giugliano, R.P., et al. (2019) Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation, 139, 1483-1492.
https://doi.org/10.1161/CIRCULATIONAHA.118.037184
[16]  张冰, 程玉宏, 刘洋, 等. 极低密度脂蛋白受体在肝脏脂类代谢中的研究进展[J]. 医学综述, 2016, 22(21): 4177-4182.
[17]  Iwasaki, T., Takahashi, S., Takahashi, M., et al. (2005) Deficiency of the Very Low-Density Lipoprotein (VLDL) Receptors in Streptozotocin-Induced Diabetic Rats: Insulin Dependency of the VLDL Receptor. Endocrinology, 146, 3286-3294.
https://doi.org/10.1210/en.2005-0043
[18]  Goudriaan, J.R., Espirito Santo, S.M., Voshol, P.J., et al. (2004) The VLDL Receptor Plays a Major Role in Chylomicron Metabolism by Enhancing LPL-Mediated Triglyceride Hydrolysis. Journal of Lipid Research, 45, 1475-1481.
https://doi.org/10.1194/jlr.M400009-JLR200
[19]  Yu, Y., Kuang, Y.L., Lei, D., et al. (2016) Polyhedral 3D Structure of Human Plasma Very Low Density Lipoproteins by Individual Particle Cryo-Electron Tomography. Journal of Lipid Research, 57, 1879-1888.
https://doi.org/10.1194/jlr.M070375
[20]  Ramms, B., Patel, S., Nora, C., et al. (2019) ApoC-III ASO Promotes Tissue LPL Activity in the Absence of apoE-Mediated TRL Clearance. Journal of Lipid Research, 60, 1379-1395.
https://doi.org/10.1194/jlr.M093740
[21]  Heidemann, B.E., Koopal, C., Bots, M.L., et al. (2021) The Relation be-tween VLDL-Cholesterol and Risk of Cardiovascular Events in Patients with Manifest Cardiovascular Disease. Interna-tional Journal of Cardiology, 322, 251-257.
https://doi.org/10.1016/j.ijcard.2020.08.030
[22]  Jawi, M.M., Frohlich, J. and Chan, S.Y. (2020) Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipopro-tein(a) Molecule. Journal of Lipids, 2020, Article ID: 3491764.
https://doi.org/10.1155/2020/3491764
[23]  DeFilippis, A.P., Trainor, P.J., Thanassoulis, G., et al. (2022) Athero-thrombotic Factors and Atherosclerotic Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis. European Heart Journal, 43, 971-981.
https://doi.org/10.1093/eurheartj/ehab600
[24]  McCormick, S.P. (2004) Lipoprotein(a): Biology and Clinical Im-portance. The Clinical Biochemist Reviews, 25, 69-80.
[25]  Takahashi, S. (2017) Triglyceride Rich Lipopro-tein-LPL-VLDL Receptor and Lp(a)-VLDL Receptor Pathways for Macrophage Foam Cell Formation. Journal of Ath-erosclerosis and Thrombosis, 24, 552-559.
https://doi.org/10.5551/jat.RV17004
[26]  Oka, K., Pastore, L., Kim, I.H., et al. (2001) Long-Term Stable Correc-tion of Low-Density Lipoprotein Receptor-Deficient Mice with a Helper-Dependent Adenoviral Vector Expressing the Very Low-Density Lipoprotein Receptor. Circulation, 103, 1274-1281.
https://doi.org/10.1161/01.CIR.103.9.1274
[27]  Turunen, T.A., Kurkipuro, J., Heikura, T., et al. (2016) Sleeping Beauty Transposon Vectors in Liver-Directed Gene Delivery of LDLR and VLDLR for Gene Therapy of Familial Hy-percholesterolemia. Molecular Therapy: The Journal of the American Society of Gene Therapy, 24, 620-635.
https://doi.org/10.1038/mt.2015.221
[28]  Rader, D.J. (2001) Gene Therapy for Familial Hypercholesterolemia. Nu-trition, Metabolism, and Cardiovascular Diseases: NMCD, 11, 40-44.
[29]  Colella, P., Ronzitti, G. and Mingozzi, F. (2018) Emerging Issues in AAV-Mediated in Vivo Gene Therapy. Molecular Therapy Methods & Clinical Development, 8, 87-104.
https://doi.org/10.1016/j.omtm.2017.11.007
[30]  Jo, H., Choe, S.S., Shin, K.C., et al. (2013) Endoplas-mic Reticulum Stress Induces Hepatic Steatosis via Increased Expression of the Hepatic Very Low-Density Lipoprotein Receptor. Hepatology (Baltimore, Md), 57, 1366-1377.
https://doi.org/10.1002/hep.26126
[31]  Shin, K.C., Hwang, I., Choe, S.S., et al. (2017) Macrophage VLDLR Me-diates Obesity-Induced Insulin Resistance with Adipose Tissue Inflammation. Nature Communications, 8, 1087.
https://doi.org/10.1038/s41467-017-01232-w
[32]  Fuchs, C.D., Claudel, T., Kumari, P., et al. (2012) Absence of Adipose Triglyceride Lipase Protects from Hepatic Endoplasmic Reticulum Stress in Mice. Hepatology (Baltimore, Md), 56, 270-280.
https://doi.org/10.1002/hep.25601
[33]  Zarei, M., Barroso, E., Palomer, X., et al. (2018) Hepatic Regulation of VLDL Receptor by PPARβ/δ and FGF21 Modulates Non-Alcoholic Fatty Liver Disease. Molecular Me-tabolism, 8, 117-131.
https://doi.org/10.1016/j.molmet.2017.12.008
[34]  Oshio, Y., Hattori, Y., Kamata, H., et al. (2021) Very Low-Density Lipoprotein Receptor Increases in a Liver-Specific Manner Due to Protein Deficiency but Does Not Affect Fatty Liver in Mice. Scientific Reports, 11, Article No. 8003.
https://doi.org/10.1038/s41598-021-87568-2
[35]  Leibowitz, M.L., Papathanasiou, S., Doerfler, P.A., et al. (2021) Chromothripsis as an On-Target Consequence of CRISPR-Cas9 Genome Editing. Nature Genetics, 53, 895-905.
https://doi.org/10.1038/s41588-021-00838-7
[36]  Ivics, Z., Li, M.A., Mátés, L., et al. (2009) Transposon-Mediated Genome Manipulation in Vertebrates. Nature Methods, 6, 415-422.
https://doi.org/10.1038/nmeth.1332
[37]  Wilber, A., Frandsen, J.L., Geurts, J.L., et al. (2006) RNA as a Source of Transposase for Sleeping Beauty-Mediated Gene In-sertion and Expression in Somatic Cells and Tissues. Molecular Therapy: The Journal of the American Society of Gene Therapy, 13, 625-630.
https://doi.org/10.1016/j.ymthe.2005.10.014
[38]  Sebastiani, F., Yanez Arteta, M., Lerche, M., et al. (2021) Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS Nano, 15, 6709-6722.
https://doi.org/10.1021/acsnano.0c10064
[39]  Debacker, A.J., Voutila, J., Catley, M., et al. (2020) Delivery of Ol-igonucleotides to the Liver with GalNAc: From Research to Registered Therapeutic Drug. Molecular Therapy: The Journal of the American Society of Gene Therapy, 28, 1759-1771.
https://doi.org/10.1016/j.ymthe.2020.06.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133