全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学及分子对接探讨血必净注射液治疗重症急性胰腺炎的潜在作用机制
The Potential Mechanism of Xuebijing Injection in Treatment of Severe Acute Pancreatitis Based on Network Pharmacology and Molecular Docking

DOI: 10.12677/TCM.2023.121047, PP. 291-305

Keywords: 网络药理学,分子对接,血必净注射液,重症急性胰腺炎,预测机制
Network Pharmacology
, Molecular Docking, Xuebijing Injection, Severe Acute Pancreatitis (SAP), Predictive Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

血必净注射液是中医中药推广应用治疗手段,为研究其在重症急性胰腺炎中治疗靶点、机制,结合目前常用复方研究的网络药理学及分子对接技术探讨血必净注射液治疗重症急性胰腺炎的潜在作用机制。检索TCMSP数据库血必净注射液的药物活性成分及作用靶点,利用GeneCards数据库筛选重症急性胰腺炎的疾病靶点,将两者Cytoscape 3.7.0软件构建“药物–成分–潜在靶点”网络,将潜在靶点导入STRING数据库、再经Cytoscape 3.7.0构成蛋白互作网络,筛选关键靶点,进行GO及KEGG富集分析。筛选获得血必净注射液有效活性成分123个,靶点249个,与重症急性胰腺炎共同靶点74个,其中关键靶点涉及AKT1、TP53、VEGFA、TNF、IL6、MMP9等。GO富集得到647个生物学过程,KEGG通路富集得到97条信号通路,选取PI3K-Akt信号通路预测血必净注射液治疗重症急性胰腺炎的作用机制。分子对接验证AKT1、TP53、VEGFA关键靶点与quercetin、luteolin、beta-sitosterol有较好结合力。血必净注射液可能通过抗炎、抗氧化等方面直接或间接对重症急性胰腺炎起到治疗作用。
This study is to explore the potential mechanism of Xuebijing Injection in the treatment of severe acute pancreatitis by network pharmacology and molecular docking technology. The active components and action targets of Xuebijing Injection were searched through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and the related targets of severe acute pancreatitis were screened by Gene Cards database. The “drug component potential target” network was constructed by using Cytoscape 3.7.0 software, and the potential targets were imported into STRING to obtain protein-protein interaction (PPI) network, which was imported into Cytoscape 3.7.0 to screen key targets. David database was used for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. A total of 123 active components of Xuebijing Injection were screened. 249 corresponding targets and 74 common targets were obtained with severe acute pancreatitis, of which the key targets included AKT1, TP53, VEGFA and so on. GO and KEGG enrichment analysis yielded 647 biological processes and 97 signal pathways. PI3K-Akt signal pathway was selected to predict the potential mechanism of Xuebijing Injection in the treatment of severe acute pancreatitis. Molecular docking verified that the key targets of AKT1, TP53 and VEGFA had good binding force with quercetin, luteolin and beta sitosterol. The analysis based on network pharmacology and molecular docking uncovered that Xuebijing Injection may have a direct or indirect therapeutic effect on severe acute pancreatitis through anti-inflammatory and anti-oxidation.

References

[1]  Pendharkar, S.A., Mathew, J. and Petrov, M.S. (2017) Age- and Sex-Specific Prevalence of Diabetes Associated with Diseases of the Exocrine Pancreas: A Population-Based Study. Digestive and Liver Disease, 49, 540-544.
https://doi.org/10.1016/j.dld.2016.12.010
[2]  Xiao, A.Y., et al. (2016) Global Incidence and Mortality of Pancreatic Diseases: A Systematic Review, Meta-Analysis, and Meta-Regression of Population-Based Cohort Studies. The Lancet Gastroenterology & Hepatology, 1, 45-55.
https://doi.org/10.1016/S2468-1253(16)30004-8
[3]  Munigala, S. and Yadav, D. (2016) Case-Fatality from Acute Pancreatitis Is Decreasing but Its Population Mortality Shows Little Change. Pancreatology, 16, 542 -550.
https://doi.org/10.1016/j.pan.2016.04.008
[4]  Yadav, D. and Lowenfels, A.B. (2006) Trends in the Epidemiology of the First Attack of Acute Pancreatitis: A Systematic Review. Pancreas, 33, 323-330.
https://doi.org/10.1097/01.mpa.0000236733.31617.52
[5]  冯俊, 谢辉, 王均祎, 等. 重症急性胰腺炎住院期间并发多重耐药菌感染影响因素及其预测模型[J]. 中华医院感染学杂志, 2022, 32(15): 2329-2333.
[6]  伍先权, 苏永辉, 卜巨源, 等. 急性坏死性胰腺炎合并糖尿病大鼠早期细菌移位的研究[J]. 中山大学学报(医学科学版), 2017, 38(3): 372-378.
[7]  Abou Saleh, M., Alkhayyat, M., Mansoor, E., et al. (2020) The Risk of Vitamin D Deficiency, Osteoporosis, and Fractures in Acute Pancreatitis. Pancreas, 49, 629-633.
https://doi.org/10.1097/MPA.0000000000001538
[8]  Aida, H., Gukovskaya, A.S. and Pandol, S.J. (2019) Acute Pancreatitis: A Multifaceted Set of Organelle and Cellular Interactions. Gastroenterology, 156, 1941-1950.
https://doi.org/10.1053/j.gastro.2018.11.082
[9]  Gukovsky, I., Li, N., Todoric, J., et al. (2013) Inflammation, Autophagy, and Obesity: Common Features in the Pathogenesis of Pancreatitis and Pancreatic Cancer. Gastroenterology, 144, 1199-1209.
https://doi.org/10.1053/j.gastro.2013.02.007
[10]  陈加链, 蔡燕杏, 陈科署, 等. 血必净注射液对重症急性胰腺炎氧化应激的影响及肺损伤的作用[J]. 中国现代普通外科进展, 2018, 21(12): 992-994.
[11]  窦志敏, 尹超, 李斌, 等. 血必净对重症急性胰腺炎患者氧化应激的影响[J]. 中国中西医结合消化杂志, 2018, 26(3): 289-292.
[12]  何淑寅, 裴颖皓, 吕海, 等. 血必净注射液对肥胖重症胰腺炎患者血清脂肪因子chemerin和抗炎/促炎系统的影响[J]. 现代中西医结合杂志, 2018, 27(1): 61-64.
[13]  于春林, 张国志. 血必净对急性胰腺炎大鼠血清一氧化氮的影响[J]. 实用药物与临床, 2015, 18(5): 513-516.
[14]  罗键雄, 何梓健, 唐翔, 等. 血必净注射液对重症急性胰腺炎大鼠腹内压的影响[J]. 广州医科大学学报, 2020, 48(2): 7-11.
[15]  Luo, T.T., Lu, Y., Yan, S.K., Xiao, X., et al. (2020) Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chinese Journal of Integrative Medicine, 26, 72-80.
https://doi.org/10.1007/s11655-019-3064-0
[16]  Xu, D., Hu, M.J., Wang, Y.Q., et al. (2019) Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 24, 1123.
https://doi.org/10.3390/molecules24061123
[17]  郑俊媛, 曾悦, 吴江红, 等. 不同剂量槲皮素对高甘油三酯血症相关性急性胰腺炎大鼠胰腺病理的影响[J]. 世界华人消化杂志, 2015, 23(20): 3195-3202.
[18]  徐晓武, 杨小敏, 金洲祥, 等. 槲皮素对重症急性胰腺炎肺损伤大鼠肺泡中性粒细胞凋亡的影响[J]. 中国病理生理杂志, 2013, 29(3): 499-503.
[19]  王小春, 邱志胜, 吕秀峰, 等. 木犀草素对重症急性胰腺炎小鼠胰腺的保护作用及可能的分子机制[J]. 解剖学报, 2020, 51(2): 273-277.
[20]  Liao, P., Lai, M.H., Hsu, K.P., et al. (2018) Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. Journal of Agricultural and Food Chemistry, 66, 10748-10759.
https://doi.org/10.1021/acs.jafc.8b04555
[21]  Li, J., Wu, Y., Zhang, S., et al. (2015) Baicalein Protect Pancreatic Injury in Rats with Severe Acute Pancreatitis by Inhibiting Pro-Inflammatory Cytokines Expression. Biochemical and Biophysical Research Communications, 466, 664-669.
https://doi.org/10.1016/j.bbrc.2015.09.094
[22]  Chen, W., Yuan, C., Lu, Y., et al. (2020) Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2/ROS Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5390482.
https://doi.org/10.1155/2020/5390482
[23]  Verotta, L., Panzella, L., Antenucci, S., et al. (2018) Fermented Pomegranate Wastes as Sustainable Source of Ellagic Acid: Antioxidant Properties, Anti-Inflammatory Action, and Controlled Release under Simulated Digestion Conditions. Food Chemistry, 246, 129-136.
https://doi.org/10.1016/j.foodchem.2017.10.131
[24]  古丽海夏?哈勒玛合拜, 田亚丽, 巴合提别克?托合塔尔拜克, 等. 鞣花酸对糖尿病小鼠胰腺炎的改善作用[J]. 中成药, 2020, 42(3): 744-747.
[25]  Zhan, L., Pu, J., Hu, Y., et al. (2021) Uncovering the Pharmacology of Xiaochaihu Decoction in the Treatment of Acute Pancreatitis Based on the Network Pharmacology. BioMed Research International, 2021, Article ID: 6621682.
https://doi.org/10.1155/2021/6621682
[26]  C?luianu, E.I., Alexandru, D.O., Tartea, E.A., et al. (2017) Assessment of T- and B-Lymphocytes and VEGF-A in Acute Pancreatitis. Romanian Journal of Morphology and Embryology, 58, 481-486.
[27]  Ling, L., Li, Y., Li, H., et al. (2019) MMP-2 and MMP-9 Gene Polymorphisms Act as Biological Indicators for Ulinastatin Efficacy in Patients with Severe Acute Pancreatitis. Medicine (Baltimore), 98, e15831.
https://doi.org/10.1097/MD.0000000000015831
[28]  Park, M.J., Iyer, S., Xue, X., et al. (2018) HIF1-alpha Regulates Acinar Cell Function and Response to Injury in Mouse Pancreas. Gastroenterology, 154, 1630-1634.
https://doi.org/10.1053/j.gastro.2018.01.037
[29]  朱婷娜, 徐恩. 缺氧诱导因子-1α在脑缺血中的作用及其机制[J]. 国际脑血管病杂志, 2012, 20(4): 310-314.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133