|
济阳坳陷碎屑岩断裂带结构特征及演化模式
|
Abstract:
通过野外断裂带露头解剖、岩心精细观察描述等手段,结合测井资料、地震资料对济阳坳陷断裂带结构类型与特征、断裂带结构演化规律开展了研究。结果表明,研究区断裂带结构包括滑动破碎带和诱导裂缝带两个结构单元。滑动破碎带位于断裂带核部,主要由断层角砾岩组成,也发育断层泥,角砾棱角明显,大小混杂,呈松散破碎或固结状态;诱导裂缝带位于滑动破碎带两侧,主要发育裂缝或者变形带等微构造,保留母岩的基本特征,一般上盘诱导裂缝带裂缝发育明显好于下盘诱导裂缝带;断裂带结构演化受断距控制,随着断距的增大,断裂带结构由一元型“诱导裂缝带”向三元型“上盘诱导裂缝带 + 滑动破碎带 + 下盘诱导裂缝带”演化。
According to field and core observation of fault zones, combined with logging data and seismic data, the structural types and characteristics, structural evolution of fault zone in Jiyang Depres-sion are studied. Brittle faults are mainly classified into two structural domains; a central core and its enveloping damage zones, which can be distinguished from the surrounding wall rock containing background deformation. The fault core generally consists of a number of recurring slip surfaces and fault rocks such as gouges, cataclasites, and breccias. Damage zones are characterized by relatively low strain and less intense deformation compared to the fault core, and these zones generally exhibit several second-order structures such as subsidiary faults and fractures. Generally, the fracture development of hanging wall is better than that of foot wall. The evolution of the fracture zone structure is controlled by displacement. With the increase of displacement, the fracture zone structure evolves from single “induced fracture zone” to ternary “upper disc induced fracture zone + sliding fracture zone + lower disc induced fracture zone”.
[1] | 樊计昌, 刘明军. 确定断裂带内部结构和物性参数的一种方法[J]. 石油地球物理勘探, 2007, 42(2): 164-169. |
[2] | 付金华. 惠民凹陷夏口断裂带油气成藏机制[J]. 石油实验地质, 2002, 24(5): 136-140. |
[3] | 韩忠义. 断层成为油气有效运移通道的主控因素分析——以东营凹陷南斜坡为例[J]. 长江大学学报(自然科学版), 2008, 5(3): 52-55. |
[4] | 罗群, 姜振学, 庞雄奇. 断裂控藏机理与模式[M]. 北京: 石油工业出版社, 2007. |
[5] | 孙永河, 漆家福, 吕延防, 等. 渤中凹陷断裂构造特征及其对油气的控制[J], 石油学报, 2008, 29(5): 669-675. |
[6] | 王永诗, 郝雪峰. 济阳断陷湖盆输导体系研究与实践[J]. 成都理工大学学报: 自然科学版, 2007, 34(4): 394-400. |
[7] | 付晓飞, 方德庆, 吕延防, 付广, 孙永河. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学, 2005, 30(3): 328-336. |
[8] | Kim, Y.S., Peacock, D.C.P. and Sanderson, D.J. (2004) Fault Damage Zones. Journal of Structural Geology, 26, 503-517. https://doi.org/10.1016/j.jsg.2003.08.002 |
[9] | Berg, S.S. and Skar, T. (2005) Controls on Damage Zone Asymmetry of a Normal Fault Zone: Outcrop Analyses of a Segment of the Moab Fault, SE Utah. Journal of Structural Geology, 27, 1803-1822.
https://doi.org/10.1016/j.jsg.2005.04.012 |
[10] | Brogi, A. (2008) Fault Zone Architecture and Permeability Features in Siliceous Sedimentary Rocks: Insights from the Rapolano Geothermal Area (Northern Apennines, Italy). Journal of Structural Geology, 30, 237-256.
https://doi.org/10.1016/j.jsg.2007.10.004 |
[11] | Caine, J.S., Evans, J.P. and Forster, C.B. (1996) Fault Zone Architecture and Permeability Structure. Journal of Structural Geology, 24, 1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 |
[12] | Engelder, J.T. (1974) Cataclasis and the Generation of Fault Gouge. Geological Society of America Bulletin, 85, 1515-1522. https://doi.org/10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2 |
[13] | Holland, M., Urai, J.L. and Zee, W.V.D. (2006) Fault Gouge Evolution in Highly Overconsolidated Claystones. Journal of Structural Geology, 28, 323-332. https://doi.org/10.1016/j.jsg.2005.10.005 |
[14] | Hung, J.H., Ma, K.F., Wang, C.Y., et al. (2007) Subsurface Structure, Physical Properties, Fault-Zone Characteristics and Stress State in Scientific Drill Holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics, 466, 307-321.
https://doi.org/10.5194/sd-SpecialIssue-55-2007 |
[15] | Sibson, R.H. (1977) Fault Rocks and Fault Mechanisms. Journal of the Geological Society of London, 133, 191-213.
https://doi.org/10.1144/gsjgs.133.3.0191 |
[16] | 高君, 吕延防, 田庆丰. 断裂带内部结构与油气运移及封闭[J]. 大庆石油学院学报, 2007, 31(2): 4-7. |
[17] | 刘鹏, 王永诗, 宋明水, 等. 碳酸盐岩断裂带断层岩特征及演化——以渤海湾盆地济阳坳陷车镇凹陷下古生界为例[J]. 石油学报, 2021, 42(5): 588-597. |