全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

上肢康复训练智能决策支持系统研究进展
Research Progress on Intelligent Decision-Making Support System for Upper Limb Rehabilitation Training

DOI: 10.12677/SEA.2022.116139, PP. 1357-1367

Keywords: 康复机器人,运动功能障碍,决策支持系统,智能处方,专家系统
Rehabilitation Robot
, Motor Dysfunction, Decision-Making Support System, Intelligent Prescription, Expert System

Full-Text   Cite this paper   Add to My Lib

Abstract:

据统计80%的脑卒中运动功能障碍患者患有上肢功能障碍,由于上肢承担了许多精细活动,故其功能恢复难度大。上肢康复训练周期长,很大程度上依赖于治疗师自身的主观经验,而现有用于训练的康复机器人普遍智能性不足,导致其临床效果欠佳。为了减轻治疗师和患者的负担,实现上肢康复训练智能化,智能决策系统成为了康复领域的研究热点之一。该文对近年来上肢康复训练智能决策系统的研究进行了综述,重点对系统知识库构建、特征处理、决策模型搭建方法的优缺点和应用场景进行了分析总结,最后对当前智能决策系统存在的问题和未来发展的趋势展开讨论,以期为相关领域学者提供一定的参考。
According to statistics, 80% of stroke patients with motor dysfunction suffer from upper limb dysfunction. Because the upper limb undertakes many fine activities, it is difficult to recover its function. The period of upper limb rehabilitation training is long, which largely depends on the subjective experience of therapists. However, the existing rehabilitation robots used for training is generally lack of intelligence, which leads to poor clinical effect. In order to reduce the burden on therapists and patients and realize the intelligence of upper limb rehabilitation training, an intelligent decision-making support system has become one of the research hotspots in medical rehabilitation. In this paper, research on intelligent decision-making support system for upper limb rehabilitation training in recent years is reviewed, focusing on the advantages, disadvantages and application range of methods used in knowledge base building, feature processing and model building. Finally, current challenges and future development trends are discussed. It is expected that this paper can provide a reference for researchers in related fields.

References

[1]  Chao, B.H., Yan, F., Hua, Y., et al. (2021) Stroke Prevention and Control System in China: CSPPC-Stroke Program. International Journal of Stroke, 16, 265-272.
https://doi.org/10.1177/1747493020913557
[2]  Xing, L.Y., Jing, L., Tian, Y.M., et al. (2020) High Prevalence of Stroke and Uncontrolled Associated Risk Factors Are Major Public Health Challenges in Rural Northeast China: A Population-Based Study. International Journal of Stroke, 15, 399-411.
https://doi.org/10.1177/1747493019851280
[3]  Chen, S.G., Shu, X.K., Jia, J., et al. (2022) Relation between Sensorimotor Rhythm during Motor Attempt/Imagery and Upper-Limb Motor Impairment in Stroke. Clinical EEG and Neuroscience, 53, 238-247.
https://doi.org/10.1177/15500594211019917
[4]  梁天佳. 脑卒中偏瘫上肢功能障碍康复治疗研究进展[J]. 广西医科大学学报, 2018, 35(7): 1026-1028.
[5]  Zanwar, R., Motar, P. and Holani, M. (2021) Effect of Functional Electrical Stimulation on Upper Limb Motor Functions in Patient with Chronic Stroke—A Case Report. Journal of Pharmaceutical Research International, 33, 199-203.
https://doi.org/10.9734/jpri/2021/v33i29B31605
[6]  姚安艳, 严璐. 脑卒中后运动功能障碍患者的康复训练研究进展[J]. 贵州中医药大学学报, 2022, 44(3): 91-95.
[7]  Ingram, L.A., Butler, A.A., Brodie, M.A., et al. (2021) Quantifying Upper Limb Motor Impairment in Chronic Stroke: A Physiological Profiling Approach. Journal of Applied Physiology, 131, 949-965.
https://doi.org/10.1152/japplphysiol.00078.2021
[8]  Rogge, A., Witt, V.D., Valdueza, J.M., et al. (2019) Experience in Rehabilitation Medicine Affects Prognosis and End-of-Life Decision-Making of Neurologists: A Case-Based Survey. Neurocritical Care, 31, 125-134.
https://doi.org/10.1007/s12028-018-0661-2
[9]  Mclaren, R., Signal, N., Lord, S., et al. (2020) The Volume and Timing of Upper Limb Movement in Acute Stroke Rehabilitation: Still Room for Improvement. Disability and Rehabilitation, 42, 3237-3242.
https://doi.org/10.1080/09638288.2019.1590471
[10]  Morone, G., Palomba, A., Cinnera, A.M., et al. (2021) Systematic Review of Guidelines to Identify Recommendations for Upper Limb Robotic Rehabilitation after Stroke. European Journal of Physical and Rehabilitation Medicine, 57, 238-245.
https://doi.org/10.23736/S1973-9087.21.06625-9
[11]  Qu, C., Wu, B., Chen, H., et al. (2018) Upper-Limb Exoskeletal Mirror Rehabilitation Robot Systems Based on Motion Sensing Control. China Mechanical Engineering, 29, 2484-2489.
[12]  Dankel, D.D. and Kristmundsdottir, M.S. (2005) REPS: A Rehabilitation Expert System for Post-Stroke Patients. Artificial Intelligence in Medicine, Proceedings, 3581, 94-98.
https://doi.org/10.1007/11527770_13
[13]  王媛. 上肢康复机器人康复训练专家系统的研究与应用[D]: [硕士学位论文]. 沈阳: 东北大学, 2012.
[14]  Natarajan, P., Agah, A. and Liu, W. (2011) Robotic Rehabilitation of Stroke Patients Using an Expert System. Journal of Automation Mobile Robotics & Intelligent Systems, 5, 47-57.
[15]  沈龙龙. 基于案例推理的康复训练专家系统的研究与应用[D]: [硕士学位论文]. 沈阳: 东北大学, 2013.
[16]  纪雯, 王建辉, 方晓柯, 等. 脑卒中康复训练智能方法及实现[J]. 系统仿真学报, 2014, 26(4): 836-842.
[17]  鲁凯旋. 上肢康复机器人康复训练方案决策支持系统的设计与实现[D]: [硕士学位论文]. 重庆: 重庆理工大学, 2021.
[18]  孟令伟. 脑卒中防治与康复智能决策支持系统的设计与实现[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016.
[19]  潘礼正, 宋爱国, 徐国政, 等. 基于SVM-GDFNN的上肢康复训练机器人处方诊断[J]. 机械工程学报, 2013, 49(13): 17-23.
[20]  潘礼正, 宋爱国, 李会军, 等. 基于小波包模糊推理的上肢康复机器人智能专家系统[J]. 高技术通讯, 2012, 22(8): 845-850.
[21]  徐功铖, 李增勇. 融合脑功能和运动评估的脑卒中康复训练处方推荐模型构建[J]. 中国生物医学工程学报, 2021, 40(4): 394-400.
[22]  程铭, 熊蜀峰, 李霏, 等. 基于混合注意力机制的脑卒中康复方案推荐[J]. 武汉大学学报(理学版), 2021, 67(6): 569-577.
[23]  Zhang, B., Wang, X., Li, H., et al. (2018) Research on Construction and Reasoning of Coal Mine Accident Case Ontology Knowledge Base. Industry and Mine Automation, 44, 35-41.
[24]  Li, Z.W., Zhang, G.Q., Wu, W.Z., et al. (2020) Measures of Uncertainty for Knowledge Bases. Knowledge and Information Systems, 62, 611-637.
https://doi.org/10.1007/s10115-019-01363-0
[25]  Almulla, M.A. (2021) Location-Based Expert System for Diabetes Diagnosis and Medication Recommendation. Kuwait Journal of Science, 48, 67-77.
https://doi.org/10.48129/kjs.v48i1.8687
[26]  Boehle, A., Katic, K., Konig, I.R., et al. (2020) Comparison of Outcome Endpoints in Intermediate- and High-Risk Prostate Cancer after Combined-Modality Radiotherapy. Brachytherapy, 19, 24-32.
https://doi.org/10.1016/j.brachy.2019.09.001
[27]  Bahadar, G.A. and Shah, Z.A. (2021) Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology, and Cognitive Impairments. CNS & Neurological Disorders-Drug Targets, 20, 312-326.
https://doi.org/10.2174/1871527320666210223145112
[28]  Ren, X.Y., Huang, Q.S., Qu, Q.Y., et al. (2021) Predicting Mortality from Intracranial Hemorrhage in Patients Who Undergo Allogeneic Hematopoietic Stem Cell Transplantation. Blood Advances, 5, 4910-4921.
https://doi.org/10.1182/bloodadvances.2021004349
[29]  Filtjens, B., Ginis, P., Nieuwboer, A., et al. (2021) Modelling and Identification of Characteristic Kinematic Features Preceding Freezing of Gait with Convolutional Neural Networks and Layer-Wise Relevance Propagation. BMC Medical Informatics and Decision Making, 21, Article No. 341.
https://doi.org/10.1186/s12911-021-01699-0
[30]  朱津成, 丁云飞. 基于机器学习的风机叶片结冰预测方法综述[J]. 中国工程机械学报, 2022, 20(2): 129-133.
[31]  王辞晓. 基于产生式规则的移动学习专家系统实证研究[J]. 开放学习研究, 2018, 23(1): 30-36.
[32]  Nagata, K. and Nakamura, T. (2019) The Supposition for the Kochen and Specker Theorem Using Sum Rule and Product Rule. International Journal of Theoretical Physics, 58, 4008-4011.
https://doi.org/10.1007/s10773-019-04267-5
[33]  Hommen, D. (2019) Ontological Commitments of Frame-Based Knowledge Representations. Synthese, 196, 4155-4183.
https://doi.org/10.1007/s11229-017-1649-8
[34]  Magid-Bernstein, J., Girard, R., Polster, S., et al. (2022) Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circulation Research, 130, 1204-1229.
https://doi.org/10.1161/CIRCRESAHA.121.319949
[35]  Chen, S.Q., Huang, J.H., Yao, L., et al. (2022) Internet plus Continuing Nursing (ICN) Program Promotes Motor Function Rehabilitation of Patients with Ischemic Stroke. Neurologist, 27, 56-60.
https://doi.org/10.1097/NRL.0000000000000364
[36]  Li, R., Wang, J.Q., Wang, S.L., et al. (2022) Prediction of Network Public Opinion Features in Urban Planning Based on Geographical Case-Based Reasoning. International Journal of Digital Earth, 15, 890-910.
https://doi.org/10.1080/17538947.2022.2078437
[37]  Zhang, K.K., Luo, N.X. and Li, Y.B. (2020) STGA-CBR: A Case-Based Reasoning Method Based on Spatiotemporal Trajectory Similarity Assessment. IEEE Access, 8, 22378-22385.
https://doi.org/10.1109/ACCESS.2020.2970082
[38]  周晶晶, 叶继伦, 张旭, 等. 脑电信号分析方法及其应用[J]. 中国医疗器械杂志, 2020, 44(2): 122-126.
[39]  肖勇, 李博, 尹家悦, 等. 基于小波变换和小波包变换的间谐波检测[J]. 智慧电力, 2022, 50(1): 101-107+114.
[40]  Huang, X., Liu, C., Zhang, Y., et al. (2020) Operation and Maintenance Strategy of Traction Transformer Based on CBR and RBR. Electric Power Automation Equipment, 40, 196-202.
[41]  Sahu, A.K. and Swain, G. (2022) High Fidelity Based Reversible Data Hiding Using Modified LSB Matching and Pixel Difference. Journal of King Saud University—Computer and Information Sciences, 34, 1395-1409.
https://doi.org/10.1016/j.jksuci.2019.07.004
[42]  Slam, N., Slamu, W. and Wang, P. (2020) A Case Representation and Similarity Measurement Model with Experience-Grounded Semantics. International Journal of Software Engineering and Knowledge Engineering, 30, 119-146.
https://doi.org/10.1142/S0218194020500060
[43]  Khan, M.J. and Khan, C. (2021) Performance Evaluation of Fuzzy Clustered Case-Based Reasoning. Journal of Experimental & Theoretical Artificial Intelligence, 33, 313-330.
https://doi.org/10.1080/0952813X.2020.1744194
[44]  Gu, D., Zhao, W., Xie, Y., et al. (2021) A Personalized Medical Decision Support System Based on Explainable Machine Learning Algorithms and ECC Features: Data from the Real World. Diagnostics, 11, 1677.
https://doi.org/10.3390/diagnostics11091677
[45]  Henzinger, C. and Vogt, S. (2020) Evaluation of the Dynamic CBR Test on Coarse-Grained Materials. Geotechnical Testing Journal, 43, 534-545.
https://doi.org/10.1520/GTJ20180269
[46]  Lee, S.K., Ahn, J., Shin, J.H., et al. (2020) Application of Machine Learning Methods in Nursing Home Research. International Journal of Environmental Research and Public Health, 17, 6234.
https://doi.org/10.3390/ijerph17176234
[47]  Kaku, A., Parnandi, A., Venkatesan, A., et al. (2020) Towards Data-Driven Stroke Rehabilitation via Wearable Sensors and Deep Learning. Proceedings of Machine Learning Research, 126, 143-171.
[48]  Guo, K.M., He, L.C., Feng, Y., et al. (2022) Surface Electromyography of the Pelvic Floor at 6-8 Weeks Following Delivery: A Comparison of Different Modes of Delivery. International Urogynecology Journal, 33, 1511-1520.
https://doi.org/10.1007/s00192-021-04789-9
[49]  Casal, G.M., Comesana, C.A., Dutra, I., et al. (2022) Design and Development of an Intelligent Clinical Decision Support System Applied to the Evaluation of Breast Cancer Risk. Journal of Personalized Medicine, 12, 169.
https://doi.org/10.3390/jpm12020169
[50]  Lin, K.S. (2020) A Case-Based Reasoning System for Interior Design Using a New Cosine Similarity Retrieval Algorithm. Journal of Information and Telecommunication, 4, 91-104.
https://doi.org/10.1080/24751839.2019.1700338

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133