全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

牙齿图像分割算法研究
Study on Tooth Image Segmentation Algorithm

DOI: 10.12677/SEA.2022.116131, PP. 1282-1287

Keywords: 牙齿图像,开闭重建,RSF & LoG模型
Tooth Image
, Open and Closed Reconstruction, RSF & LoG Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

牙齿图像存在边界模糊、对比度不佳的情况,传统的图像分割方法无法实现精确分割。本文提出了一种基于开闭重建和RSF & LoG模型相结合的算法用于牙齿图像分割处理,首先用开闭重建使得图像区域内部灰度趋于一致,消除金属伪影等因素的干扰,然后采用基于区域的水平集方法对图像进行分割,为克服区域内部灰度变化对水平集分割效果的干扰、以及水平集对初始设置敏感的问题。本文采用区域可调整拟合RSF模型来对图像进行分割,在RSF能量函数中增加了优化LoG的泛函能量函数以更好平滑同质区域,增强牙齿图像的边缘。实验结果表明,该算法分割效率高,鲁棒性好。
Dental images usually have blurred boundaries and poor contrast, and traditional image segmentation methods fail to achieve accurate segmentation. This paper presents an algorithm combining open and closed reconstruction and RSF & LoG model for tooth image segmentation processing. First, the open and closed reconstruction is used to reconcile the gray scale within the image area, eliminating the interference of metal artifacts. Then, the region-based horizontal set method was used to overcome the interference of the image segmentation effect and the problems if the level set is sensitive to the initial setting. The region-adjustable fitting RSF model is used to segment the image, adding the functional energy function of the optimized LoG to the RSF energy function to better smooth the homogeneous region and enhance the edge of the tooth image. Experimental results show that the algorithm is efficient and robust.

References

[1]  Jiang, J., Huang, Z., Ma, X., Zhang, Y., He, T. and Liu, Y. (2019) Establishment and Experiment of Utility Archwire Dynamic Orthodontic Moment Prediction Mode. IEEE Transactions on Biomedical Engineering, 2019, 1958-1968.
[2]  包广斌, 杨旭鹏, 康宏. 基于改进的高斯混合模型牙齿图像分割研究[J]. 兰州理工大学学报, 2020, 46(3): 100-104.
[3]  Osher, S. and Sethian, J. (1988) Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 79, 12-49.
https://doi.org/10.1016/0021-9991(88)90002-2
[4]  Ji, D.X., Ong, S.H. and Foong, K.W.C. (2014) A Level-Set Based Approach for Anterior Teeth Segmentation in Cone Beam Computed Tomography Images. Computers in Biology and Medicine, 50, 116-128.
https://doi.org/10.1016/j.compbiomed.2014.04.006
[5]  Wang, Y.J., et al. (2018) Accurate Tooth Segmentation with Improved Hybrid Active Contour Model. Physics in Medicine and Biology, 64, Article ID: 015012.
https://doi.org/10.1088/1361-6560/aaf441
[6]  石沁祎, 闫方, 杨阳, 等. 基于水平集的牙齿牙槽骨图像分割[J]. 波谱学杂志, 2021, 38(2): 182-193.
[7]  Jiang, B.X., Zhang, S.Z. and Shi, M.Y. (2022) Alternate Level Set Evolutions with Controlled Switch for Tooth Segmentation. IEEE, 10, 76563-76572.
https://doi.org/10.1109/ACCESS.2022.3192411
[8]  李云红, 张秋铭, 周小计, 等. 基于形态学及区域合并的分水岭图像分割算法[J]. 计算机工程与应用, 2020, 56(2): 190-195.
[9]  Ding, K., Xiao, L. and Weng, G. (2017) Active Contours Driven by Region-Scalable Fitting and Optimized Laplacian of Gaussian Energy for Image Segmentation. Signal Processing, 134, 224-233.
https://doi.org/10.1016/j.sigpro.2016.12.021
[10]  Chan, T.F. and Vese, L.A. (2001) Active Contours without Edges. IEEE Transactions on Image Processing, 10, 266-277.
https://doi.org/10.1109/83.902291
[11]  Li, C., Kao, C.Y., Gore, J.C., et al. (2008) Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Transactions on Image Processing, 17, 1940-1949.
https://doi.org/10.1109/TIP.2008.2002304

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133