全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑决策者关联关系及容忍行为的最大专家数共识模型研究
Research on Maximum Experts Consensus Model Considering the Association among Decision-Makers and the Tolerance Behavior

DOI: 10.12677/MSE.2022.114076, PP. 633-644

Keywords: 共识决策,最大专家数,决策者权重,关联属性,容忍限度
Consensus Decision-Making
, Maximum Experts Consensus, The Weight of Decision Maker, Associated Attributes, Tolerance Limit

Full-Text   Cite this paper   Add to My Lib

Abstract:

最大专家数共识是在有限预算下最大化共识达成的人数。其中,决策者权重往往由协调者给定,存在较大的主观性。此外,现有研究忽视了决策者行为对共识结果的影响。本文研究了通过关联多属性评价确定决策者权重的方法以及考虑决策者容忍行为的最大专家数共识问题。首先,考虑评价属性间的关联关系,利用Choquet积分确定决策者的权重。其次,关注协调者意见以及决策者对意见调整的容忍行为,构建考虑决策者容忍限度的最大专家数共识模型。最后,通过算例对模型的有效性进行验证。研究结果表明:1) 决策者的容忍行为有利于促进最大专家数共识的达成。2) 考虑属性关联的权重确定方法可以降低主观偏好的影响。3) 协调者意见能合理规范共识意见的产生。
The aim of the maximum experts consensus is to maximize the number of decision-makers (DMs) who are reached the consensus under the limited budget. The weight of the DMs is often given by the moderator, which is subjective. In addition, existing research has ignored the impact of DMs’ behavior on consensus results. In this paper, we study the method of determining the weight of DMs through the evaluation of associated attributes and the maximum experts consensus problem considering the DMs’ tolerant behavior. First, consider the correlation between evaluation attributes and use the Choquet integral to determine the weight of DMs. Secondly, put emphasis on the moderator’s opinion and the DMs’ tolerant behavior; then build a maximum experts consensus model considering the DMs’ tolerance limit. Finally, the validity of the model is verified by an example. The results show that: 1) The DMs’ tolerant behavior is conducive to reaching the maximum experts consensus. 2) The weight determination method considering associated attributes can reduce the influence of subjective preference. 3) The moderator’s opinion can reasonably regulate the consensus opinions.

References

[1]  Liang, X., Guo, J. and Liu, P. (2022) A Large-Scale Group Decision-Making Model with no Consensus Threshold Based on Social Network Analysis. Information Sciences, 612, 361-383.
https://doi.org/10.1016/j.ins.2022.08.075
[2]  Du, J., Liu, S. and Liu, Y. (2021) A Limited Cost Consensus Approach with Fairness Concern and Its Application. European Journal of Operational Research, 298, 261-275.
https://doi.org/10.1016/j.ejor.2021.06.039
[3]  Yu, S.-M., Zhang, X.-T. and Du, Z.-J. (2023) Enhanced Minimum-Cost Consensus: Focusing on Overadjustment and Flexible Consensus Cost. Information Fusion, 89, 336-354.
https://doi.org/10.1016/j.inffus.2022.08.028
[4]  Chen, X., Xu, W., Liang, H. and Dong, Y. (2020) The Classification-Based Consensus in Multi-Attribute Group Decision-Making. Journal of the Operational Research Society, 71, 1375-1389.
https://doi.org/10.1080/01605682.2019.1609888
[5]  刘培德, 滕飞. 基于证据推理和广义Shapley值的扩展概率语言多属性群决策方法[J]. 中国管理科学, 2020, 28(11): 206-218.
[6]  Labella, á., Liu, H., Rodríguez, R.M. and Martínez, L. (2019) A Cost Consensus Metric for Consensus Reaching Processes Based on a Comprehensive Minimum Cost Model. European Journal of Operational Research, 281, 316-331.
https://doi.org/10.1016/j.ejor.2019.08.030
[7]  Ben-Arieh, D., Easton, T. and Evans, B. (2008) Minimum Cost Consensus with Quadratic Cost Functions. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 39, 210-217.
https://doi.org/10.1109/TSMCA.2008.2006373
[8]  Zhang, B., Dong, Y. and Xu, Y. (2013) Maximum Expert Consensus Models with Linear Cost Function and Aggregation Operators. Computers & Industrial Engineering, 66, 147-157.
https://doi.org/10.1016/j.cie.2013.06.001
[9]  Qu, S., Li, Y. and Ji, Y. (2021) The Mixed Integer Robust Maximum Expert Consensus Models for Large-Scale GDM under Uncertainty Circumstances. Applied Soft Computing, 107, Article ID: 107369.
https://doi.org/10.1016/j.asoc.2021.107369
[10]  Zhang, B., Dong, Y., Feng, X. and Pedrycz, W. (2021) Maximum Fuzzy Consensus Feedback Mechanism with Minimum Cost and Private Interest in Group Decision Making. IEEE Transactions on Fuzzy Systems, 29, 2689-2700.
https://doi.org/10.1109/TFUZZ.2020.3006559
[11]  Cheng, D., Zhou, Z., Cheng, F., Zhou, Y. and Xie, Y. (2018) Modeling the Minimum Cost Consensus Problem in an Asymmetric Costs Context. European Journal of Operational Research, 270, 1122-1137.
https://doi.org/10.1016/j.ejor.2018.04.041
[12]  Li, Y., Li, G. and Kou, G. (2022) Consensus Reaching Process in Large-Scale Group Decision Making Based on Opinion Leaders. Procedia Computer Science, 199, 509-516.
https://doi.org/10.1016/j.procs.2022.01.062
[13]  许艳秋, 潘美芹. 层次分析法和支持向量机在个人信用评估中的应用[J]. 中国管理科学, 2016, 24(S1): 106-112.
[14]  田雪姣, 鲍新中, 杨大飞, 杨武. 基于熵权-TOPSIS-德尔菲法的核心技术识别研究——以芯片产业技术为例[J]. 情报杂志, 2022, 41(8): 69-74+86.
[15]  黄利文. 基于理想点的主成分分析法在综合评价中的应用[J]. 统计与决策, 2021, 37(10): 184-188.
[16]  祝志川, 薛冬娴, 孙丛婷. 基于AHP改进AF法的多维相对贫困测度与分解[J]. 统计与决策, 2021, 37(16): 10-14.
[17]  熊金石, 秦洪涛, 李建华, 等. 基于信息熵的安全风险评估指标权重确定方法[J]. 系统科学学报, 2013, 21(2): 82-84.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133