全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

博弈视角下考虑个体努力程度的共识决策方法研究
A Consensus Decision-Making Method Considering Individual Effort from the Game Perspective

DOI: 10.12677/MSE.2022.114066, PP. 525-532

Keywords: 共识决策,Stackelberg博弈,个体努力程度,最小成本,个体感知效用
Consensus Decision Making
, Stackelberg Game, Individual Effort, Minimum Cost, Individual Per-ceived Utility

Full-Text   Cite this paper   Add to My Lib

Abstract:

在达成群体共识过程中,个体决策者需要为共识目标的实现付出诸如时间、精力、主动性等努力。与此同时,博弈视角下协调者的补偿策略会影响决策者付出努力的程度,且过高的努力成本会降低决策者个体感知效用进而导致共识决策失败。针对协调者与决策者交互行为下的共识达成问题,本文从博弈视角提出了一种考虑个体努力程度的共识决策方法,提出了考虑决策者个体努力程度的个体感知效用函数,基于博弈视角建立了共识均衡机制,并利用粒子群算法进行求解。以北淝河跨界水污染治理为背景,水利部作为协调者,流域途径的五个主要地区的河长为决策者。基于博弈理论考虑各地河长个体努力程度与单位努力成本,将有助于水利部合理制定补偿策略,分配跨界污水治理任务,进而提升河长个体感知效用并节省群体总共识成本。
In the group consensus decision making, individual decision-maker makes efforts to achieve col-lective goal after reaching consensus, including time, energy, work attitude and initiative. Exces-sive unit effort cost will reduce individual perceived utility and may lead to a failed consensus. In this paper, a consensus game model considering individual effort is proposed for group decision making under the interaction between moderator and decision-makers. This paper proposes an individual perceived utility function considering individual effort of decision-makers, establishes a consensus equilibrium mechanism based on the game perspective, and uses Particle Swarm Opti-mization algorithm to solve it. Taking the transboundary water pollution control of the North Feihe River as the background, the Ministry of Water Resources acts as the moderator, and the river leaders of the five main regions along the river basin are the decision-makers. In the research of consensus game model considering individual effort, reasonable to set up consensus threshold and unit effort cost will help river leaders and the Ministry of Water Resources to both win the game.

References

[1]  程栋, 张静阳, 袁宇翔, 程发新. 基于区间意见的非对称最小成本共识决策问题研究[J]. 运筹与管理, 2022, 31(5): 43-48.
[2]  赵萌, 张晨曦, 胡亦奇, 李刚. 基于愿景满意度函数的多属性群决策方法[J]. 中国管理科学, 2020, 28(2): 220-230.
[3]  Ben-Arieh, D. and Easton, T. (2007) Multi-Criteria Group Consensus under Linear Cost Opinion Elasticity. Decision Support Systems, 43, 713-721.
https://doi.org/10.1016/j.dss.2006.11.009
[4]  Ben-Arieh, D., Easton, T. and Evans, B. (2009) Minimum Cost Consensus with Quadratic Cost Functions. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 39, 210-217.
https://doi.org/10.1109/TSMCA.2008.2006373
[5]  Zhang, G.Q., Dong, Y.C., Xu, Y.F. and Li, H.Y. (2011) Minimum-Cost Consensus Models under Aggregation Operators. IEEE Transactions on Systems, Man, and Cyber-netics—Part A: Systems and Humans, 41, 1253-1261.
https://doi.org/10.1109/TSMCA.2011.2113336
[6]  Zhang, B.W., Dong, Y.C. and Xu, Y.F. (2013) Maximum Expert Consensus Models with Linear Cost Function and Aggregation Operators. Computers & Industrial Engi-neering, 66, 147-157.
https://doi.org/10.1016/j.cie.2013.06.001
[7]  Gong, Z.W., Xu, X.X., Zhang, H.H., Aytun Ozturk, U., Herrera-Viedma, E. and Xu, C. (2015) The Consensus Models with Interval Preference Opinions and Their Economic Interpretation. Omega, 55, 81-90.
https://doi.org/10.1016/j.omega.2015.03.003
[8]  Zhang, B.W., Liang, H.M., Gao, Y. and Zhang, G.Q. (2018) The Optimization-Based Aggregation and Consensus with Minimum-Cost in Group Decision Making under In-complete Linguistic Distribution Context. Knowledge-Based Systems, 162, 92-102.
https://doi.org/10.1016/j.knosys.2018.05.038
[9]  Zhang, H.H., Kou, G. and Peng, Y. (2019) Soft Consensus Cost Models for Group Decision Making and Economic Interpretations. European Journal of Operational Research, 277, 964-980.
https://doi.org/10.1016/j.ejor.2019.03.009
[10]  Cheng, D., Zhou, Z.L., Cheng, F.X., Zhou, Y.F. and Xie, Y.J. (2018) Modeling the Minimum Cost Consensus Problem in an Asymmetric Costs Context. European Journal of Operational Research, 270, 1122-1137.
https://doi.org/10.1016/j.ejor.2018.04.041
[11]  Ji, Y., Li, H.H. and Zhang, H.J. (2022) Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost. Group Decision and Negotiation, 31, 261-291.
https://doi.org/10.1007/s10726-021-09752-z
[12]  Guo, W.W., Gong, Z.W., Xu, X.X., Krejcar, O. and Herre-ra-Viedma, E. (2020) Linear Uncertain Extensions of the Minimum Cost Consensus Model Based on Uncertain Distance and Consensus Utility. Information Fusion, 70, 12-26.
https://doi.org/10.1016/j.inffus.2020.12.002
[13]  徐选华, 张前辉. 社会网络环境下基于共识的风险性大群体应急决策非合作行为管理研究[J]. 控制与决策, 2020, 35(10): 2497-2506.
[14]  陈晓红, 李慧, 谭春桥. 考虑不同心理行为偏好的混合随机多属性决策[J]. 系统工程理论与实践, 2018, 38(6): 1545-1556.
[15]  Lu, Y.L., Xu, Y.J., Herrera-Viedma, E. and Han, Y.F. (2020) Consensus of Large-Scale Group Decision Making in Social Network: The Minimum Cost Model Based on Robust Optimization. Information Sciences, 547, 910-930.
https://doi.org/10.1016/j.ins.2020.08.022
[16]  Wu, J., Zhao, Z.W., Sun, Q. and Fujita, H. (2021) A Maximum Self-Esteem Degree Based Feedback Mechanism for Group Consensus Reaching with the Distributed Linguistic Trust Propagation in Social Network. Information Fusion, 67, 80-93.
https://doi.org/10.1016/j.inffus.2020.10.010
[17]  张恒杰, 王芳, 董庆兴, 巩再武, 吴坚, 吴志彬, 许叶军, 张震, 董玉成. 群体共识决策的研究进展与展望[J]. 电子科技大学学报(社会科学版), 2021, 23(2): 26-37.
[18]  刘小弟, 朱建军, 张世涛, 刘思峰. 基于后悔理论与群体满意度的犹豫模糊随机多属性决策方法[J]. 中国管理科学, 2017, 25(10): 171-178.
[19]  Aouni, B., Abdelaziz, F.B. and Martel, J-M. (2005) Decision-Maker’s Preferences Modeling in the Stochastic Goal Programming. European Journal of Operational Research, 162, 610-618.
https://doi.org/10.1016/j.ejor.2003.10.035
[20]  Yang, J.B. and Sen, P. (1996) Preference Modelling by Esti-mating Local Utility Functions for Multiobjective Optimization. European Journal of Operational Research, 95, 115-138.
https://doi.org/10.1016/0377-2217(96)00300-1
[21]  Gong, Z.W., Xu, X.X., Lu, F.L., Li, L.S. and Xu, C. (2015) On Consensus Models with Utility Preferences and Limited Budget. Applied Soft Computing, 35, 840-849.
https://doi.org/10.1016/j.asoc.2015.03.019
[22]  Cheng, D., Yuan, Y.X., Wu, Y., Hao, T.T. and Cheng, F.X. (2022) Maximum Satisfaction Consensus with Budget Constraints Considering Individual Tolerance and Com-promise Limit Behaviors. European Journal of Operational Research, 297, 221-238.
https://doi.org/10.1016/j.ejor.2021.04.051
[23]  Gao, H.X., Ju, Y.B., Zeng, X.J. and Zhang W.K. (2021) Sat-isfaction-Driven Consensus Model for Social Network MCGDM with Incomplete Information under Probabilistic Linguistic Trust. Computers & Industrial Engineering, 154, Article ID: 107099.
https://doi.org/10.1016/j.cie.2021.107099
[24]  Zhang, B.W., Dong, Y.C., Zhang, H.J. and Pedrycz, W. (2020) Consensus Mechanism with Maximum-Return Modifications and Minimum-Cost Feedback: A Perspective of Game Theory. European Journal of Operational Research, 287, 546-559.
https://doi.org/10.1016/j.ejor.2020.04.014
[25]  Jing, F.Y. and Chao, X.R. (2021) Fairness Concern: An Equi-librium Mechanism for Consensus-Reaching Game in Group Decision-Making. Information Fusion, 72, 147-160.
https://doi.org/10.1016/j.inffus.2021.02.024

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133