|
YOLOv5改进算法在机械零件中的识别与应用
|
Abstract:
针对智能生产制造过程中,传统的目标检测算法对机械零件识别率不高,识别速度慢等问题,结合深度学习与现有算法,提出一种基于YOLOv5改进的目标检测算法。该算法在YOLOv5骨干网络中加入注意力机制,以用来改善原始YOLOv5算法对相似背景下相似零件识别率低的问题;其次,通过引入CIou损失函数,使得改进后的YOLOv5算法能够更快地收敛并具有更好的性能;最后,将改进前后的算法模型分别训练后对机械零件进行识别并对比分析,证实改进后的YOLOv5算法具有高的识别精度和鲁棒性。
Aiming at the problems such as low recognition rate and slow recognition speed of mechanical parts in the process of intelligent production and manufacturing, an improved object detection algorithm based on YOLOv5 was proposed by combining deep learning and existing algorithms. This algorithm adds an attention mechanism into the YOLOv5 backbone network to improve the low recognition rate of similar parts under similar backgrounds of the original YOLOv5 algorithm; Secondly, by introducing CIou loss function, the improved YOLOv5 algorithm can converge faster and have better performance; Finally, the algorithm models before and after the improvement are trained respectively to identify the mechanical parts and make a comparative analysis. It is confirmed that the improved YOLOv5 algorithm has high recognition accuracy and robustness.
[1] | 尹旭悦, 范秀敏, 顾岩, 等. 动态视觉手势识别下手工装配时序控制的智能防错方法[J]. 计算机集成制造系统, 2017, 23(7): 1457-1468. |
[2] | 周济. 智能制造是“中国制造2025”主攻方向[J]. 企业观察家, 2019(11): 54-55. |
[3] | Dalal, N. and Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Diego, 20-26 June 2005, 886-893. |
[4] | Lowe, D.G. (2004) Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60, 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 |
[5] | Ojala, T., Pietikainen, M. and Maenpaa, T. (2002) Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987.
https://doi.org/10.1109/TPAMI.2002.1017623 |
[6] | Bin, G., et al. (2015) Incremental Support Vector Learning for Ordinal Regression. IEEE Transactions on Neural Networks & Learning Systems, 26, 1403-1416. https://doi.org/10.1109/TNNLS.2014.2342533 |
[7] | Wen, X., Ling, S., Yu, X., et al. (2015) A Rapid Learning Algorithm for Vehicle Classification. Information Sciences: An International Journal, 295, 395-406. https://doi.org/10.1016/j.ins.2014.10.040 |
[8] | Girshick, R., Donahue, J., Darrell, T., et al. (2014) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Tech Report (v5). 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 580-587. https://doi.org/10.1109/CVPR.2014.81 |
[9] | Girshick, R. (2015) Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, Santiago, 11-18 December 2015, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
[10] | Ren, S., He, K., Girshick, R., et al. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031 |
[11] | Redmon, J., Divvala, S., Girshick, R., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91 |
[12] | Liu, W., Anguelov, D., Erhan, D., et al. (2016) SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., Computer Vision—ECCV, Springer, Cham, 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2 |
[13] | Yan, B., Fan, P., Lei, X., et al. (2021) A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sensing, 13, 1619-1642. https://doi.org/10.3390/rs13091619 |
[14] | Xi, D., Qin, Y. and Wang, S. (2021) YDRSNet: An Integrated Yolov5-Deeplabv3+ Real-Time Segmentation Network for Gear Pitting Measurement. Journal of Intelligent Manufacturing, 1-15.
https://doi.org/10.1007/s10845-021-01876-y |
[15] | 杨琳, 陈赛旋, 崔国华, 等. 基于改进YOLOv4算法的零件识别与定位[J]. 组合机床与自动化加工技术, 2021(10): 28-32+37. |
[16] | 余永维, 韩鑫, 杜柳青. 基于Inception-SSD算法的零件识别[J]. 光学精密工程, 2020, 28(8): 1799-1809. |
[17] | Woo, S., Park, J., Lee, J., et al. (2018) CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., 2018 European Conference on Computer Vision (ECCV), Springer, Cham, 3-19.
https://doi.org/10.1007/978-3-030-01234-2_1 |