全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类基于非侵入式家用电器监测系统的设计与实现
Design and Implementation of a Non Intrusive Household Appliance Monitoring System

DOI: 10.12677/SEA.2022.116152, PP. 1473-1478

Keywords: 非侵入式,电器监测,量子遗传,交叉熵
Non-Invasive
, Electrical Monitoring, Quantum Genetics, Cross Entropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究提出了一类基于非侵入式家用电器监测系统的设计与实现,概述了非侵入式家用电器监测系统的六个模块,包含采集数据模块、预处理数据模块、GPRS数据传输模块,存储数据模块,云端算法识别模块,智能显示模块。分别对各个模块的设计和实现来分析,其中算法识别模块在遗传算法的基础之上进行了算法改进,采用了量子遗传算法并选择了交叉熵函数作为适应度函数来实现,使得非侵入式家庭电器识别系统的精确度更高,算法识别放在云端来实现,在计算速度上也会有很大的提高,不仅能够存储非常丰富的样本数据库,稳定性更高,并且适用范围也更广。
This paper studies and proposes the design and implementation of a non-invasive household appliance monitoring system, and summarizes six modules of the non-invasive household appliance monitoring system, including acquisition data module, preprocessing data module, GPRS transmission module, data storage module, cloud algorithm recognition module, and intelligent display module. The design and implementation of each module are analyzed respectively. The algorithm identification module is improved on the basis of the genetic algorithm. The quantum genetic algorithm is adopted and the cross entropy function is selected as the fitness function to achieve, it make the non-invasive home appliance identification system more accurate and, the algorithm recognition is implemented in the cloud, and the computing speed will also be greatly improved. It can not only store a very rich sample database, but also has higher stability and wider application scope.

References

[1]  周明, 宋旭帆, 涂京, 李庚银, 栾开宁. 基于非侵入式负荷监测的居民用电行为分析[J]. 电网技术, 2018, 42(10): 7.
[2]  Hart, G.W. (1992) Nonintrusive Appliance Load Monitoring. Proceedings of the IEEE, 80, 1870-1891.
https://doi.org/10.1109/5.192069
[3]  程祥, 李林芝, 吴浩, 等. 非侵入式负荷监测与分解研究综述[J]. 电网技术, 2016, 40(10): 3108-3117.
https://doi.org/10.13335/j.1000-3673.pst.2016.10.026
[4]  孙毅, 崔灿, 陆俊, 等. 基于遗传优化的非侵入式家居负荷分解方法[J]. 电网技术, 2016, 40(12): 3912-3917.
[5]  陈垚彤. 基于优化问题的量子遗传算法研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2019.
[6]  耿赫男. 非侵入式居民负荷特征提取及智能用电研究[D]: [硕士学位论文]. 沈阳: 沈阳工程学院, 2019.
[7]  四川长虹电器股份有限公司. 一种非侵入式电力负载识别错误样本的采集方法[P]. 中国专利, CN201910642536.6, 2019-10-18.
[8]  四川长虹电器股份有限公司. 基于交叉熵的非侵入式电器识别方法[P]. 中国专利, CN201910453513.0, 2019-08-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133