全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Maggot Production Residue on Amaranth Growth Parameters

DOI: 10.4236/ojss.2022.1212024, PP. 571-585

Keywords: Musca domestica, Maggot Residue, Amaranth, Fertilization, Niger

Full-Text   Cite this paper   Add to My Lib

Abstract:

Amaranth is one of the most consumed vegetables in Niger Republic because of its nutritional values. However, the production of this plant requires nutrient-rich soils that are becoming scarce in most agricultural soils in Niger. This study aims to evaluate the fertilizing potential of the maggot production residue of Musca domestica L. 1758 and bovine excrement on the agronomic parameters of Amaranthus cruentus L., 1759. To do this, four densities (50, 100, 150, 200 g) of maggot production residue and bovine excrement were tested. Stem length, neck diameter and leaf number were strongly influenced by the interaction of the type of treatment (maggot production residue and bovine excrement) and dose. Dose 50 and dose 150 gave the best performance in length and diameter respectively for residue (length = 42.24 ± 8.98 cm; diameter = 0.88 ± 0.17 cm) and bovine droppings (length = 39.29 ± 8.10; diameter = 0.98 ± 0.77). On the leaf number side, no significant differences were observed between the doses for the residue. For bovine excrement, this number was higher at the 150 g dose (28.12 ± 4.98). The effect of the residue and bovine excrement on each corresponding dose shows that, for the stem length, only the 50 g dose was statistically influenced by the latter (P < 0.001). On the neck diameter side, only the 50 g and 100 g doses were statistically influenced by bovine residue and excrement (dose 50 g: P < 0.001; dose 100 g: P < 0.001). For each of these doses, the residue recorded the best performance both for the length of the rod and for the diameter at the collar. On the leaf number side, only the dose 50 g and 150 g varied statistically according to the type of fertilizer. At the 50 g dose, the residue recorded the largest number of leaves (27.10 ± 11.15), but the residue recorded the lowest number of leaves at the 100 g dose (21.01 ± 5.99). Foliar and root biomass varied statistically according to the dose within each fertilizer (foliar biomass: residue: P = 0.040; bovine excrement: P < 0.001; root biomass: residue: P < 0.001; bovine excrement: P < 0.001). The highest leaf biomass was obtained with doses 50 and 150 respectively for residue (155.00 ± 33.91 g) and bovine excrement (123.20 ± 20.57 g). The 150 g dose gave the best root biomass performance for the residue. For bovine excrement, the dose of 150 g and 200 g gave (without any significant difference between them) the best performance in root biomass with 21.80 ± 5.48 g and 21.50 ± 4.74 g respectively. The effect of residue and bovine excrement on each

References

[1]  Afshin, A., Sur, P.J., Fay, K.A., Cornaby, L., Ferrara, G., Salama, J.S. and Mullany, E.C. (2019) Health Effects of Dietary Risks in 195 Countries, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 393, 1958-1972.
https://doi.org/10.1016/S0140-6736(19)30041-8
[2]  Gomes, F.S. and Reynolds, A.N. (2021) Effects of Fruits and Vegetables Intakes on Direct and Indirect Health Outcomes—Background Paper for the FAO/WHO International Workshop on Fruits and Vegetables 2020. FAO and PAHO, Rome.
https://doi.org/10.4060/cb5727en
[3]  Horton, R., Beaglehole, R., Bonita, R., Raeburn, J., McKee, M. and Wall, S. (2014) From Public to Planetary Health: A Manifesto. The Lancet, 383, 847.
https://doi.org/10.1016/S0140-6736(14)60409-8
[4]  Lock, K., Pomerleau, J., Causer, L., Altmann, DR. and McKee, M. (2005) The Global Burden of Disease Attributable to Low Consumption of Fruit and Vegetables: Implications for the Global Strategy On diet. Bulletin of the World Health Organization, 83, 100-108.
[5]  Slavin, J. and Lloyd, B. (2012) Health Benefits of Fruits and Vegetables. Advances in Nutrition, 3, 506-516.
https://doi.org/10.3945/an.112.002154
[6]  Messsiaen, C.-M. (1992) The Tropical Vegetable Garden. 2nd Revised Edition, Macmillan Press Limited, London, 57-365.
[7]  Organisation Mondiale de la santé (OMS) (2003) Diet, Nutrition, and The Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation. World Health Organization, Geneva.
[8]  Organisation Mondiale de la santé (OMS) (2005) Fruit and Vegetables for Health. Report of the Joint FAO/WHO Workshop. World Health Organization, Geneva.
[9]  Souleymane, N., Legba, E.C., Aglinglo, L.A., Francisco, R.A., Sogbohossou, O.D., et al. (2021) Fiche technique synthétique pour la production des amarantes (Amaranthus spp.). Laboratory of Genetics, Biotechnology and Seed Sciences (GbioS).
https://doi.org/10.13140/RG.2.2.30958.54084
[10]  James, B., Atcha-Ahowé, C., Godonou, I., Baimey, H., Goergen, H., Sikirou, R. and Toko, M. (2010) Integrated Pest Management in Vegetable Production: A Guide for Extension Workers in West Africa. IITA, Ibadan.
[11]  Olaniyi, J.O., Adelasoye, K.A. and Jegede, C.O. (2008) Influence of Nitrogen Fetilizer on the Growth, Yield and Quality of Grain Amaranth Varieties. World Journal of Agricultural Sciences, 4, 506-513.
[12]  FAO (Organisation des Nations Unies pour Alimentation et Agriculture) (2016) La gestion durable des sols: Clé pour la sécurité alimentaire et lanutrition en Afrique.
https://www.fao.org/publications/card/es/c/bb34ee17-2268-494e-bfea-b73d2f4a84d4/
[13]  Annou, G. (2002) Grands types de sols du Niger. Quatorzième réunion dusous-comité Ouest et Centre Africain de corrélation des sols pour la miseen valeur des terres du 9 au 13 Octobre 2000 à Abomey (Bénin). Rapportsur les resources en sols du monde, No. 98, FAO, Rome, 169 p.
[14]  Ambouta, J.M.K., Amadou, I. and Souley, I. (1998) La gestion de la fertilitéetévolution des sols de Gakudi (Maradi, Niger). Note de recherche. Cahiers Agricultures 7, 395-400.
[15]  Bationo, A., Lompo, F. and Koala, S. (1998) Research on Nutrient Flows and Balances in West Africa: State-of-the-Art. Agriculture, Ecosystems & Environment 71, 19-35.
https://doi.org/10.1016/S0167-8809(98)00129-7
[16]  Lavigne-Delville, P. (1996) Gérer la fertilité des terres dans les pays du Sahel: Diagnostic et conseil aux paysans. 397 p.
https://agritrop.cirad.fr/306169/
[17]  Pieri, C. (1989) Fertilité des terres des savanes. Bilan de trente ans derecherche et de développement agricoles au sud du Sahara. Ministèrede la Coopération et du Développement, CIRAD-IRAT, Paris, 444 p.
[18]  Ambouta, J.M.K. (1994) Etude des facteurs de formation d’une crouted’érosion et de ses relations avec les propriétés internes d’un sol sableux finau Niger. Ph.D. Thesis, Université Laval, Québec, 97 p.
[19]  Bado, B.V. (2002) Role des légumineuses sur la fertilité des sols ferrugineux tropicaux des zones guinéenne et soudanienne du Burkina Faso. Thèse de Doctorat de troisième cycle, Université de Laval, Québec, 166 p.
[20]  Henao, J. and Baanante, C. (2006) Agricultural Production and Soil Nutrient Mining in Africa: Implications for Resource Conservation and Policy Development. International Fertilizer Development Center, Muscle Shoals.
[21]  Koulibaly, B., Traoré, O., Dakuo, D. and Zombré, P.N. (2009) Effets des amendements locaux sur les rendements, les indices de nutrition et les bilans culturaux dans un système de rotation coton-mais dans l’ouest du BurkinaFaso. Biotechnology, Agronomy, Society and Environment, 13, 103-111.
[22]  CILSS (2011) Capitalisation des actions d’amélioration durable de la fertilité des sols pour l’aide à la décision au Burkina Faso (FERSOL). Gestion durable des terres au Burkina Faso. Comment produire le compost à l’air libre avec la paille, 20 p.
[23]  Koulibaly, B., Traoré, O., Dakuo, D. and Zombré, P.N. (2010) Effets de la valorisation des résidus de récolte sur la nutrition minérale du cotonnier etles rendements d’une rotation coton-mais-sorgho dans l’Ouest du BurkinaFaso. International Journal of Biological and Chemical Sciences, 4, 2120-2132.
https://doi.org/10.4314/ijbcs.v4i6.64953
[24]  Cickova, H., Newton, G.L., Lacy, R.C. and Kozanek, M. (2015) The Use of Fly Larvae for Organic Waste Treatment. Waste Management, 35, 68-80.
https://doi.org/10.1016/j.wasman.2014.09.026
[25]  Kovacik, P., Kozanek, M., Takac, P., Gallikova, M. and Varga, L. (2014) The Effect of Pig Manure Fermented by Larvae of House Flies on the Yield Parameters of Sunflowers (Helianthus annus L.). Acta Universitatis Agriculturae et Silviculturea Mendelianae Brunensis, 58, 147-154.
https://doi.org/10.11118/actaun201058020147
[26]  Newton, G.L., Sheppard, D.C., Watson, D.W., Burtle, G.J., Dove, C.R., Tomberlin, J.K. and Thelen, E.E. (2005) The Black Soldier Fly, Hermetia illucens, as a Manure Management/Resource Recovery Tool. Symposium on the State of the Science of Animal Manure and Waste Management, San Antonio, 5-7 January 2015.
[27]  Pastor, B., Velasquez, Y., Gobbi, P. and Rojo, S. (2015) Conversion of Organic Wastes into Fly Larval Biomass: Bottlenecks and Challenges. Journal of Insects as Food and Feed, 1, 79-193.
https://doi.org/10.3920/JIFF2014.0024
[28]  Leyo, I.H., Ousmane, Z.M., Francis, F. and Caparros Megido, R. (2021) Techniques to Produce Housefly (Musca domestica L. 1758) Maggots for Poultry Feed, a Literature Review. Tropicultura, 39, 2295-8010.
[29]  Niu, Y., Heng, D., Yao, B., Cai, Z., Zhao, Z., Wu, S., Cong, P. and Yang, D. (2017) A Novel Bioconversion for Value-Added Products from Food Waste Using Muscadomestica. Waste Management, 61, 455-460.
https://doi.org/10.1016/j.wasman.2016.10.054
[30]  Holmes, L.A., Vanlaerhoven, S.L. and Tomberlin, J.K. (2012) Relative Humidity Effects on the Life History of Hermetia illucens (Diptera: Stratiomyidae). Environmental Entomology, 41, 971-978.
https://doi.org/10.1603/EN12054
[31]  M’Sadak, Y. and Ben M’Barek, A. (2013) Caractérisation qualitative du digestat solide de la bio méthanisation industrielle des fientes avicoles et alternative de son exploitation agronomique hors sol. Université de Sousse, Tunisie. Revue des Energies Renouvelables, 16, 33-42.
[32]  Association Francaise de Normalisation (AFNOR) (1981) Détermination dupH. NF ISO 10390. AFNOR qualité des sols, Paris, 339-348.
[33]  Walkley, A. and Black, I.A. (1934) An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.
https://doi.org/10.1097/00010694-193401000-00003
[34]  Hillebrand, W.F., Lundell, G.E.F., Bright, H.A. and Hoffman, J.I. (1953) Applied Inorganic Analysis. 2nd Edition, John Wiley & Sons, Inc., New York, 1034 p.
[35]  Adolphe, N.N., Gustave, M.K., Remy, M.T., Angel, M.M. and Dieudonné N.N. (2020) Influence de l’apport des matières organiques sur la culture de poivron (Capsicum annum L.) Cultivé sur un sol sableux à Kabinda, province de Lomami, en République Démocratique du Congo. International Journal of Innovation and Applied Studies, 29, 613-618.
[36]  Amadji, G.L. and Migan, D.Z. (2001) Influence d’un amendement organique (compost) sur les propriétés physico-chimiques et la productivité d’un sol ferrugineux tropical. Annales des Sciences Agronomiques du Bénin, 2, 123-139.
[37]  Amidou, M., Djènontin, A.J. and Wennink, B. (2005) Valorisation des résidus de récolte dans l’exploitation agricole au nord du Bénin: utilizationde la bouseproduit dans le parc de stabulation des baeufs. Bulletin de laRecherche Agronomique du Bénin, 47, 19-25.
[38]  Sissoko, D., Coulibaly, N. and Kéita, S. (2009) Analyse économique de l’essai de fertilisation du mais à base de fiente de volaille dans la zone périurbaine du District de Bamako. Les Cahiers de l’Economie Rurale, 7, 2-10.
[39]  Bloukounon-Goubalan, A.Y., Saidou, A., Togbé, E., Chabi, F., Babatounde, S., Chrysostome, C.A.A., Kenis, M. and Mensah, G.A. (2017) Physical and Chemical Properties of Animals’ Organic Residues Decomposed by Musca domestica and Calliphora vomitoria Larvae. Journal of Agriculture and Environmental Sciences, 61, 92-104.
https://doi.org/10.15640/jaes
[40]  Eghball, B., Wienhold, B.J., Gilley, J.E. and Eigenberg, R.A. (2002) Mineralization of Manure Nutrients. Journal of Soil and Water Conservation, 57, 470-473.
[41]  Kebli, H. and Sokrat, S. (2017) Potentiel agronomique d’un engrais naturel à base de digestats de larves de mouches. Recherche Agronomique Suisse, 8, 88-95.
[42]  Ognalaga, M. and Itsoma, E. (2014) Effet de Chromolaena odorata et de Leucaena leucocephalae sur la croissance et la production de l’oseille de Guinée (Hibiscus sabdariffa L.). Agronomie Africaine, 26, 1-88.
[43]  Atta, S., Sarr, B., Bakasso, Y., Diallo, A.B., Lona, I, Saadou, M. and Glew, R.H. (2010) Roselle (Hibiscus sabdariffa L.) Yield and Yield Components in Response to Nitrogen Fertilization in Niger. Indian Journal of Agricultural Research, 44, 96-103.
[44]  Gbadamosi, A.E. (2006) Fertilizer Response in Seedlings of Medicinal Plantenantia Chlorantha Oliv. Tropical and Subtropical Agroecosystems, 6, 111-115.
[45]  Gbénou, P., Adandonon, A., Hambada, K.D.M. and Bodjrènou, S.S.E. (2021) Influence des doses de bouse de vaches sur la croissance et la production de la grande morelle (Solanum marcocarpon L.) dans les conditions agroécologiques de Kakanitchoé, commune d’Adjohoun au Bénin. RevueAfricaine d’Environnement et d’Agriculture, 4, 71-77.
[46]  Hoque, R.A.T.M., Hossain, M.K., Mohiuddin, M. and Hoque M.M. (2004) Effect of Inorganic Fertilizers on the Initial Growth Performance of Anthocephalus chinensis (Lam.) Rich. Ex. Walp. Seedlings in the Nursery. Journal of Applied Sciences, 4, 477-485.
https://doi.org/10.3923/jas.2004.477.485
[47]  Ikeh, O., Ndaeyo, N.U., Uduak, I.G., Iwo, G.A., Ugbe, L.A., Udoh, E.I. and Effiong, G.S. (2012) Growth and Yield Responses of Pepper (Capsicum frutescens L.) to Varied Poultry Manure Rates in Uyo, Southeastern Nigeria. ARPN Journal of Agricultural and Biological Science, 7, 735-742.
[48]  Foidl, N., Makkar, H.P.S. and Becker, K. (2001) The Potential of Moringa oleifera for Agricultural and Industrial Uses. What Development Potential for Moringa Products? October, 20th - November 2nd, 2001. Dar es Salaam.
https://moringatrees.org/moringa-doc/the_potential_of_moringa_oleifera_for_agricultural_and_industrial_uses.pdf
[49]  Kpéra, A., Gandonou, C.B., Aboh, A.B., Gandaho, S. and Gnancadja, L.S. (2017) Effet de différentes doses de bouse de vache, d’urine humaine et de leur combinaison sur la croissance végétative et le poids des fruits de l’ananas (Ananas comosus (L.) Merr.) au Sud Bénin. Journal of Applied Biosciences, 110, 10761-10775.
https://doi.org/10.4314/jab.v110i1.6
[50]  Squire, G.R. (1990) The Physiology of Tropical Crop Production. CAB International, Wallingford, 143-177.
[51]  UIFA (Union des Industries de la Fertilisation Azotée) (2000) Fertilisants et qualité des produits alimentaires. UIFA, Paris, 4 p.
[52]  Kitabala, M.A., Tshala, U.J., Kalenda, M.A., Tshijika, I.M. and Mufind, K.M. (2016) Effets de différentes doses de compost sur la production et larentabilité de la tomate (Lycopersicon esculentum Mill) dans la ville de Kolwezi, Province du Lualaba (RD Congo). Journal of Applied Biosciences, 102, 9669-9679.
[53]  Weber, J., Karczewska, A., Drozd, J., Lieznar, M., Lieznar, S., Jamroz, E. and Kocowiez, A. (2007) Agricultural and Ecological Aspects of Sandy Soil as Affected by the Application of Municipal Solid Waste Composts. Soil Biology and Biochemistry, 39, 1294-1302.
https://doi.org/10.1016/j.soilbio.2006.12.005
[54]  Kowaljow, E. and Mazzarino, M.J. (2007) Soil Restoration in Semi-Arid Patagonia: Chemical and Biological Response to Different Compost Quality. Soil Biology and Biochemistry, 39, 1580-1588.
https://doi.org/10.1016/j.soilbio.2007.01.008
[55]  Tognetti, C., Mazzarino, M.J. and Laos, F. (2008) Compost of Municipal Organic Waste: Effects of Different Management Practices on Degradability and Nutrient Release Capacity. Soil Biology and Biochemistry, 49, 2290-2296.
https://doi.org/10.1016/j.soilbio.2008.05.006
[56]  Reganold, J.P., Glover, J.D., Andrews, P.K. and Hinman, H.R. (2001) Sustainability of Three Apple Production Systems. Nature, 410, 926-930.
https://doi.org/10.1038/35073574

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133