全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

级配不连续透明土可视化及渗透实验研究
Visualization of Tortuosity and Experimental Study on Permeability of Graded Discontinuous Transparent Soil

DOI: 10.12677/AG.2022.1211142, PP. 1456-1467

Keywords: 透明土,渗透系数,迂曲度
Transparent Soil
, Permeability Coefficient, Tortuosity

Full-Text   Cite this paper   Add to My Lib

Abstract:

土体内部的渗流问题较为复杂,传统的观测方法不能很好地观测到实验的过程。随着透明土技术的发展,利用配置与天然土体性质相近的透明土代替天然土进行实验观测成为一种新兴的技术手段。本文通过此方法设计物理实验,建立模型,实现对土体内部渗流等问题的可视化研究。并将实验所获得的迂曲度参数代入经典的渗透系数模型计算公式从而得到土体的渗透系数,最后通过计算所得渗透系数之间的对比,探索其随土体自身物理特征变化而变化的趋势和规律。
The seepage problem in the soil is more complex, and the traditional observation method cannot observe the experimental process well. With the development of transparent soil technology, it has become a new technical means to replace natural soil with transparent soil. In this paper, physical experiments are designed and models are established by this method to realize the visual research on the internal seepage of soil. The tortuosity parameter obtained from the experiment is substituted into the classical calculation formula of the permeability coefficient model to obtain the permeability coefficient of the soil. Finally, through the comparison between the calculated permeability coefficients, the trend and law of its change with the physical characteristics of the soil itself are explored.

References

[1]  毛昶熙, 冯玉宝, 段祥宝. 堤防设计中的非稳定渗流计算[J]. 水利学报, 2002(12): 56-62+67.
[2]  张秀丽. 国内外大坝失事或水电站事故典型案例原因汇集[J]. 大坝与安全, 2015(1): 13-16.
[3]  Hazen, A. (2014) Some Physical Properties of Sands and Gravels, with Special Reference to Their Use in Filtration. 24th Annual Rep., Massachusetts State Board of Health, Pub. Doc. No. 34, 539-556.
[4]  Hazen, A. (1911) Discussion of Dams on sand Foundations by A. C. Koenig. Transactions of the American Society of Civil Engineers, 73, 199-203.
https://doi.org/10.1061/TACEAT.0002320
[5]  Taylor, D.W. (1948) Fundamentals of Soil Mechanics, Wiley, New York.
https://doi.org/10.1097/00010694-194808000-00008
[6]  Mansur, C.L. and Kaufman, R.I. (1962) Foundation Engineering. McGraw-Hill, New York, 241-350.
[7]  Kovacs, G. (1981) Seepage Hydraulics. Elsevier Scientific, Amsterdam.
[8]  Kozeny, J. (1927) Uber kapillare leitung der wasser in boden. Royal Academy of Science, Vienna, Proc. Class I, 136, 271-306.
[9]  Carman, P.C. (1938) The Determination of the Specific Surface of Powders I. Transactions. J. Soc. Chem. Ind., 57, 225-234.
[10]  郑斌, 李菊花. 基于Kozeny-Carman方程的渗透率分形模型[J]. 天然气地球科学, 2015, 26(1): 193-198.
[11]  Xu, P. and Yu, B. (2008) Developing a New form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry. Advances in Water Resources, 31, 74-81.
https://doi.org/10.1016/j.advwatres.2007.06.003
[12]  Costa, A. (2006) Permeability-Porosity Relationship: A Reexamination of the Kozeny-Carman Equation Based on a Fractal Pore-Space Geometry Assumption. Geophysical Research Letters, 33, L02318.
https://doi.org/10.1029/2005GL025134
[13]  金韦剑, 朱斌. 基于透明土孔隙介质双渗流模型试验研究[J]. 四川地质学报, 2020, 40(1): 103-106.
[14]  Bear, J. (1988) Dynamics of Fluids in Porous Media. Dover Publications, Inc., New York.
[15]  Amer, A.M. and Award, A.A. (1974) Permeability of Cohesionless Soils. Journal of Geotechnical and Geoenvironmental Engineering, 100, 1309-1316.
https://doi.org/10.1061/AJGEB6.0000134

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133