|
频率域可控源电磁法三维反演进展
|
Abstract:
频率域可控源电磁法(FCSEM)是一种基于人工源激发的地球物理勘探方法,比大地电磁探测有更强的扛干扰能力,比重磁勘探有更高的分辨率。因此在地球物理资源勘探领域中发挥着关键的作用。FCSEM反演方法的研究及其算法稳定性、有效性和计算效率,一直都是近年来的热点。本文主要介绍了可控源电磁法三维反演数值模拟技术,进展,以及相关解算法的应用,并对各种方法的特点作了比较分析,最后对FCSEM进行了总结,并给出了未来的发展方向。
Frequency domain controlled source electromagnetic (FCSEM), a geophysical exploration method, is based on artificial source excitation. The method is stronger in the interference carrying than electromagnetic exploration and is higher in resolution than gravity-magnetic prospecting. Recently, the theory research and effectiveness, stability, and computational efficiency of 3D CSEM inversion have always been the focus. This paper mainly introduces 3D CSEM inversion, including the progress of numerical simulation methods and the application of algorithms relating solution, compares the properties of various methods, and gives the prospect of future development. Finally, CSEM method is summarized, and the future development direction is given.
[1] | Newman, G.A. and Boggs, P.T. (2004) Solution Accelerators for Large-Scale Three-Dimensional Electromagnetic Inverse Problems. Inverse Problems, 20, 151-170. https://doi.org/10.1088/0266-5611/20/6/S10 |
[2] | 底青云, Martyn Unsworth, 王妙月. 复杂介质有限元法2.5维可控源音频大地电磁法数值模拟[J]. 地球物理学报, 2004, 47(4): 723-730. |
[3] | 底青云, 王若. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008. |
[4] | 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005. |
[5] | Egbert, G.D. and Kelbert, A. (2012) Computational Recipes for Electromagnetic Inverse Problems. Geophysical Journal International, 189, 251-267. https://doi.org/10.1111/j.1365-246X.2011.05347.x |
[6] | 林昌洪, 谭捍东, 舒晴, 佟拓, 谭嘉言. 可控源音频大地电磁三维共轭梯度反演研究[J]. 地球物理学报, 2012, 55(11): 3829-3838. |
[7] | 翁爱华, 刘云鹤, 贾定宇, 廖祥东, 殷长春. 地面可控源频率测深三维非线性共轭梯度反演[J]. 地球物理学报, 2012, 55(10): 3506-3515. |
[8] | 刘云鹤, 殷长春. 三维频率域航空电磁反演研究[J]. 地球物理学报, 2013, 56(12): 4278-4287. |
[9] | Haber, E. (2005) Quasi-Newton Methods for Large-Scale Electromagnetic Inverse Problems. Inverse Problems, 21, 305-323. https://doi.org/10.1088/0266-5611/21/1/019 |
[10] | 龙志丹. 基于矢量有限元的频率域可控源电磁法三维反演研究[D]: [博士学位论文]. 武汉: 中国地质大学, 2021. |
[11] | Benbett, C.L. and Weeks, W.L. (1968) Electromagnetic Pulse Response of Cylindrical Scatterers. Antennas & Propagation Society International Symposium, Boston, 9-11 September 1968, 176-183. |
[12] | 任政勇, 陈超健, 汤井田, 周峰, 陈煌, 邱乐稳, 胡双贵. 一种新的三维大地电磁积分方程正演方法[J]. 地球物理学报, 2017, 60(11): 4506-4515. |
[13] | 刘永亮, 李桐林, 朱成, 关振伟, 苏晓波. 基于拟线性积分方程法的三维电磁场数值模拟精度分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1268-1277. |
[14] | 殷长春, 朴化荣. 三维电磁模拟技术及其在频率测深法中应用[J]. 地球物理学报, 1994, 37(6): 820-827. |
[15] | Yee, K. (1966) Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Transactions on Antennas & Propagation, 14, 302-307. https://doi.org/10.1109/TAP.1966.1138693 |
[16] | 万文武. 基于有限元-谱元法的电磁场数值模拟[D]: [硕士学位论文]. 桂林: 桂林理工大学, 2021. |
[17] | 周印明, 王金海, 胡晓颖, 何展翔, 熊彬. 基于矢量位和标量位的广域电磁法三维有限元数值模拟[J]. 石油地球物理勘探, 2021, 56(1): 181-189+12. |
[18] | 殷长春, 贲放, 刘云鹤, 等. 三维任意各向异性介质中海洋可控源电磁法正演研究[J]. 地球物理学报, 2014, 57(12): 4110-4122. |
[19] | 胡善政. 可控源音频大地电磁法三维数值模拟研究[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2006. |
[20] | 许诚, 底青云. 极低频电磁法典型矿区模型三维积分方程法正演研究[C]//中国科学院地质与地球物理研究所2012年度(第12届)学术论文汇编——工程地质与水资源研究室. 2013: 580-581. |
[21] | Coggon, J.H. (1971) Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36, 132-155.
https://doi.org/10.1190/1.1440151 |
[22] | Mukherjee, S. and Everett, M.E. (2010) 3D Controlled-Source Electromagnetic Edge-Based Finite Element Modeling of Conductive and Permeable Heterogeneities. Geophysics, 76, F215-F226. https://doi.org/10.1190/1.3571045 |
[23] | Silva, N.V.D, Morgan, J.V., Macgregor, L., et al. (2012) A Finite Element Multifrontal Method for 3D CSEM Modeling in the Frequency Domain. Geophysics, 77, E101-E115. https://doi.org/10.1190/geo2010-0398.1 |
[24] | 王亚璐, 底青云, 王若. 三维CSAMT法非结构化网格有限元数值模拟[J]. 地球物理学报, 2017, 60(3): 1158-1167. |
[25] | 张钱江, 戴世坤, 陈龙伟, 强建科, 李昆, 赵东东. 多源条件下直流电阻率法有限元三维数值模拟中一种近似边界条件[J]. 地球物理学报, 2016, 59(9): 3448-3458. |
[26] | 黄渡, 吴小平. 起伏地形下时间域激发极化法三维非结构有限元数值模拟[J]. 中国科学技术大学学报, 2020, 50(5): 705-714. |
[27] | Bernardi, C., Maday, Y. and Métivet, B. (1987) Spectral Approximation of the Periodic-Nonperiodic Navier-Stokes Equations. Numerische Mathematik, 51, 655-670. https://doi.org/10.1007/BF01400175 |
[28] | Seriani, G. and Priolo, E. (1991) High-Order Spectral Element Method for Acoustic Wave Modeling. SEG Technical Program Expanded Abstracts, 1561-1564. https://doi.org/10.1190/1.1888989 |
[29] | Komatitsch, D. and Tromp, J. (2002) Spectral-Element Simulations of Global Seismic Wave Propagation-II. Three-Dimensional Models, Oceans, Rotation and Self-Gravitation. Geophysical Journal International, 150, 303-318.
https://doi.org/10.1046/j.1365-246X.2002.01716.x |
[30] | 魏亦文, 王有学, 张智. 谱元法波场模拟中的属性建模技术[J]. 地球物理学进展, 2017, 32(5): 2091-2096. |
[31] | 刘玲. 基于GLC多项式谱元法的频率域三维电磁正演模拟研究[D]: [硕士学位论文]. 长春: 吉林大学, 2018. |
[32] | 黄鑫. 基于任意六面体谱元法频率/时间域航空电磁三维正演模拟研究[D]: [博士学位论文]. 长春: 吉林大学, 2019. |
[33] | Mackie, R.L. and Madden, T.R. (2000) Three-Dimensional Magnetotelluric Inversion Using Conjugate Gradients. Geophysical Journal International, 140, 410-424. https://doi.org/10.1046/j.1365-246x.2000.00007.x |
[34] | Spichak V, Popova. (2000) Artificial Network Inversion of Magneto Telluric Data in Terms of Three-Dimensional Earth Macroparameters. Geophysical Journal International, 142, 15-26.
https://doi.org/10.1046/j.1365-246x.2000.00065.x |
[35] | 谭捍东, 余钦范, John Booker, 魏文博. 大地电磁法三维快速松弛反演[J]. 地球物理学报, 2003, 46(6): 850-854+889. |
[36] | 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究[J]. 应用地球物理(英文版), 2009, 6(1): 77-83. |
[37] | 赵东东, 张钱江, 戴世坤, 等. 基于高斯牛顿法的二维直流电阻率法的快速反演[J]. 中国有色金属学报, 2015(6): 1662-1671. |
[38] | Bae, H.S., Pyun, S. and Chung, W. (2012) Frequency-Domain Acoustic Elastic Coupled Waveform Inversion Using the Gauss-Newton Conjugate Gradient Method. Geophysical Prospecting, 60, 413-432.
https://doi.org/10.1111/j.1365-2478.2011.00993.x |
[39] | Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P. (2004) Multiscale Imaging of Complex Structures from Multifold Wide-Aperture Seismic Data by Frequency-Domain Full-Waveform Tomography: Application to a Thrust Belt. Geophysical Journal International, 159, 1032-1056.
https://doi.org/10.1111/j.1365-246X.2004.02442.x |
[40] | 彭荣华, 胡祥云, 韩波. 基于高斯牛顿法的频率域可控源电磁三维反演研究[J]. 地球物理学报, 2016, 59(9): 3470-3481. |
[41] | Marquardt, D.W. (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431-441. https://doi.org/10.1137/0111030 |
[42] | 吴小平, 徐果明. 利用共轭梯度法的电阻率三维反演研究[J]. 地球物理学报, 2000, 43(3): 420-427. |
[43] | 唐传章, 程见中, 严良俊, 冯广业, 周磊, 徐凤姣. 基于边界约束有限内存的拟牛顿CSAMT一维反演及应用[J]. 煤田地质与勘探, 2019, 47(5): 193-200. |
[44] | 段长生. 基于拟牛顿法和数据空间共轭梯度法的CSAMT三维反演研究[D]: [博士学位论文]. 成都: 成都理工大学, 2020. |
[45] | 马逢群, 谭捍东, 孔文新. 基于有限内存拟牛顿法的电阻率法三维主轴各向异性反演研究[J]. 地球物理学进展, 2022, 37(2): 637-647. |
[46] | 阮帅. 三维大地电磁有限内存拟牛顿反演[D]: [博士学位论文]. 成都: 成都理工大学, 2015. |
[47] | 杨悦, 翁爱华, 张艳辉, 李世文, 唐裕. 可控源有限内存拟牛顿法三维反演及其应用[C]//2018年中国地球科学联合学术年会论文集(二十二)——专题45: 海洋地球物理、专题46: 电磁地球物理学研究应用及其新进展. 北京: 中国和平音像电子出版社, 2018: 61-62. |
[48] | 卢慧芳, 杨月婷. 一种新的修正有限内存拟牛顿法[J]. 华东师范大学学报(自然科学版), 2010(1): 34-38. |
[49] | 曹晓月, 殷长春, 张博, 等. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究(英文) [J]. 应用地球物理(英文版), 2018(z1): 556-565+570. |
[50] | Fletcher, R. and Reeves, C.M. (1964) Function Minimization by Conjugate Gradients. The Computer Journal, 7, 149-154. https://doi.org/10.1093/comjnl/7.2.149 |
[51] | Polyak, E. and Ribiere, G. (1969) Note sur la convergence de méthodes de directions conjuguées. R.I.R.O., 3, 35-43.
https://doi.org/10.1051/m2an/196903R100351 |
[52] | Rodi, W.L. and Mackie, R.L. (2012) Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophysics, 66, 174-187. https://doi.org/10.1190/1.1444893 |
[53] | Newman, G.A. and Alumbaugh, D.L. (2000) Three-Dimensional Magnetotelluric Inversion Using Non-Linear Conjugate Gradients. Geophysical Journal International, 140, 410-424. https://doi.org/10.1046/j.1365-246x.2000.00007.x |
[54] | 强建科, 满开峰, 龙剑波, 鲁凯, ZHU Yue, 陈龙伟, 李俊营, 毛先成. 时间域航空电磁2.5维非线性共轭梯度反演[J]. 地球物理学报, 2016, 59(12): 4701-4709. |