|
煤矸石分拣机械臂的轨迹跟踪控制研究
|
Abstract:
煤矸石分拣机械臂在捡取过程中,带式输送机上煤矸石抖振等外部因素对机械臂末端形成冲击,导致机械臂控制系统出现不确定性问题,造成机械臂抓取煤矸石时控制性能下降、轨迹跟踪误差偏大;为此,在传统滑模控制的基础上,改进出一种RBF神经网络的切换增益调节滑模控制方法。根据拉格朗日理论推导出煤矸石分拣机械臂动力学数学模型,针对模型中不确定部分,结合滑模控制算法与RBF神经网络,利用RBF神经网络来调节滑模控制中的切换增益,使得切换增益能够随着不确定部分改变而改变,同时减弱传统滑膜控制中的抖振问题。采用MATLAB软件,进行所述控制器仿真实验,分析机械臂关节角度跟踪效果及切换增益调节响应时间。仿真结果表明:本文所述控制方法可以更快地贴近期望轨迹值,同时跟踪误差也得到降低。搭建实验平台,在煤矸石分拣机械臂上展开实验,模拟分拣煤矸石几字形路径。根据激光标定仪反馈数据得出:该控制方法可以保证机械臂运动的合理性和安全性,能够实现较短时间内收敛达到煤矸石分拣过程中的期望轨迹,符合煤矸石分拣的实际工况需求。
During the picking process of the coal gangue sorting robotic arm, external factors such as buffeting of coal gangue on the belt conveyor impact the end of the manipulator, which leads to the uncertainty of the control system of the manipulator, and causes the control system when the manipulator grabs the coal gangue. The performance is degraded and the trajectory tracking error is too large; for this reason, based on the traditional sliding mode control, an RBF neural network switching gain adjustment sliding mode control method is improved. According to the Lagrangian theory, the dynamic mathematical model of the coal gangue sorting manipulator is deduced. For the uncertain part of the model, the sliding mode control algorithm and the RBF neural network are combined, and the RBF neural network is used to adjust the switching gain in the sliding mode control. The switching gain can be changed with the change of the uncertain part, while reducing the chattering problem in the traditional synovial control. Using MATLAB software, the controller simulation experiment was carried out, and the tracking effect of the joint angle of the manipulator and the response time of the switching gain adjustment were analyzed. The simulation results show that the control method described in this paper can approach the desired trajectory value faster, and the tracking error is also reduced. Build an experimental platform, carry out experiments on the coal gangue sorting robotic arm, and simulate the zigzag path of sorting coal gangue. According to the feedback data of the laser calibrator, it is concluded that the control method can ensure the rationality and safety of the movement of the manipulator, and can achieve the desired trajectory in the coal gangue sorting process by convergence in a short time, which is in line with condition needs of the actual work of coal gangue sorting.
[1] | 高许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 2020, 48(9): 1-15. |
[2] | 中国煤炭报. 关于加快煤矿智能化发展的指导意见[R]. 2020. |
[3] | 夏云凯, 李功民. 我国动力煤干选技术现状及展望[J]. 洁净煤技术, 2017, 23(6): 21-29. |
[4] | Ge, Y. and Zhang, H. (2017) Trajectory Tracking Algorithm for Robot Based on Adaptive Fuzzy Sliding Mode Control. Journal of Electronic Measurement & Instrument at Ion, 31, 745-755. |
[5] | Paek, J., Jin, M. and Han, S. (2016) A New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators. IEEE Transactions on Industrial Electronics, 63, 3628-3637. https://doi.org/10.1109/TIE.2016.2522386 |
[6] | Tao, Y., Zheng, J. and Lin, Y. (2016) A Sliding Mode Control-Based on a RBF Neural Network for Deburring Industry Robotic Systems. International Journal of Advanced Robotic Systems, 13, 1-8. https://doi.org/10.5772/62002 |
[7] | 史先鹏, 刘士荣. 机械臂轨迹跟踪控制研究进展[J]. 控制工程, 2011, 18(1): 116-122. |
[8] | 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京: 清华大学出版社, 2005. |
[9] | 许嵩立, 王冬青, 周振. 机械臂滑模控制算法研究[J]. 工业仪表与自动化装置, 2021(1): 3-7+12. |
[10] | 肖凡, 李光, 周鑫林. 多连杆机械臂GA-RBF神经网络轨迹跟踪控制[J]. 机械科学与技术, 2018, 37(5): 669-675. |
[11] | 刘晶, 普杰信, 牛新月. 基于神经网络滑模的机械臂轨迹跟踪控制方法[J]. 计算机工程与设计, 2019, 40(7): 1934-1938. |
[12] | 李文波, 王耀南. 基于神经网络补偿的机器人滑模变结构控制[J]. 计算机工程与应用, 2014, 50(23): 251-255. |
[13] | 陈军, 姜卫东. 改进RBF神经网络的机械臂轨迹跟踪控制方法[J/OL]. 机械设计与制造: 1-5.
https://doi.org/10.19356/j.cnki.1001-3997.20220722.002, 2022-07-22. |
[14] | 鲁彩丽. 六自由度机械臂轨迹跟踪控制策略[D]: [硕士学位论文]. 成都: 西南交通大学, 2015. |
[15] | 李小玲. 基于RBF神经网络的机械臂自适应滑模控制[D]: [硕士学位论文]. 黄石: 湖北师范大学, 2022. |
[16] | 赵莹莹, 杨帆, 马惠雯. 基于干扰感测器的六自由度机械臂滑模控制[J]. 天津城建大学学报, 2021, 27(6): 453-458. |
[17] | 崔鑫, 姜宏, 周建平, 等. 基于模糊切换增益消抖的机械臂滑模控制设计与仿真[J]. 机床与液压, 2020, 48(3): 1-4. |
[18] | 龚双双, 刘霞. 基于切换增益调节的神经滑模控制的机器人位置跟踪[J]. 西华大学学报(自然科学版), 2021, 40(1): 11-16. |
[19] | 吴爱国, 刘海亭, 董娜. 机械臂神经网络非奇异快速终端滑模控制[J]. 农业机械学报, 2018, 49(2): 395-404. |
[20] | 董君, 陈立. RBF神经网络算法的非线性积分滑模控制机械臂运动轨迹误差研究[J]. 中国工程机械学报, 2018, 16(2): 106-110. |
[21] | 王宏, 郑天奇. 基于滑模补偿的六轴机械臂RBF网络自适应控制[J]. 东北大学学报(自然科学版), 2017, 38(11): 1601-1606. |
[22] | GB/T12642-2013. 工业机器人性能规范及其实验方法[S]. 北京: 中国机械工业联合会, 2013. |