|
陆地生态系统uWUE模型最优k值研究
|
Abstract:
陆地生态系统的蒸散发是陆气间水、碳和能量交换的重要纽带。底层水分利用效率uWUE模型提高了对陆地生态系统碳水耦合关系的描述,基于uWUE的蒸散发分割方法也得到广泛应用。然而,对uWUE模型中的关键参数k的不确定性知之甚少。为了排除不同植被类型引起参数k的变化,本研究讨论了单一植被类型的uWUE模型参数k的最优值问题。研究结果证明了uWUE模型参数k存在不同于模型经验值的最优值k*。单一植被类型uWUE模型的指数偏离一般经验值的原因是地理环境的差异。常绿针叶林的k*在0.2~1.1之间呈多峰分布,与uWUE模型中的一般经验值(k = 0.5)存在较大偏差。经度、纬度、标高、年平均降水、年平均温度等五个地理变量对常绿针叶林的k*均存在影响。其中,高程、经度和纬度对k*的影响权重合计达80%;而年平均降水量和年平均温度的权重占20%。本研究指出了uWUE模型中的关键参数k存在较大的不确定性,揭示了参数k是基于uWUE模型的蒸散发分割方法的不确定性的重要来源。
Evapotranspiration in terrestrial ecosystems is an important link for water, carbon and energy exchange between land and air. The new leaf scale uWUE model can better describe the coupling relationship between carbon and water in terrestrial ecosystems, and the UWU-based evapo-transpiration segmentation method has been widely used. However, little is known about the uncertainty of the key parameter k in the uWUE model. In order to exclude the variation of parameter k caused by different plant functional types, this study discussed the optimal value of parameter k of uWUE model with a single vegetation type. The results prove that there exists an optimal value k* for the parameter k of the uWUE model, which is different from the empirical value of the model. The reason why the parameter k of uWUE model for a plant functional type deviates from the general empirical value is the differences in geographical environments. The k* of evergreen coniferous forest showed a multi-peak distribution between 0.2 and 1.1, which was significantly different from the general empirical value (k = 0.5) in uWUE model. Five geographical variables, such as longitude, latitude, elevation, annual mean precipitation and annual mean temperature, all have influence on k* of evergreen coniferous forest. Among them, the influence altitude, longitude and latitude on k* reach 80%. Annual mean precipitation and annual mean temperature account for 20% of the weight. This study points out that the key parameter k in uWUE model has great uncertainty, and reveals that parameter k is an important source of uncertainty for the evapotranspiration segmentation method based on uWUE model.
[1] | Zhang, K., Kimball, J.S. and Running, S.W. (2016) A Review of Remote Sensing Based Actual Evapotranspiration Estimation. Wiley Interdisciplinary Reviews: Water, 3, 834-853. https://doi.org/10.1002/wat2.1168 |
[2] | Law, B.E., Falge, E., Gu, L., Baldocchi, D.D. and Olson, R. (2002) Environmental Controls over Carbon Dioxide and Water Vapor Exchange of Terrestrial Vegetation. Agricultural and Forest Meteorology, 113, 97-120.
https://doi.org/10.1016/S0168-1923(02)00104-1 |
[3] | Beer, C., Ciais, P., Reichstein, M., et al. (2009) Temporal and Among-Site Variability of Inherent Water Use Efficiency at the Ecosystem Level. Global Biogeochemical Cycles, 23, GB2018. https://doi.org/10.1029/2008GB003233 |
[4] | Zhou, S., Yu, B., Schwalm, C.R., Ciais, P., Zhang, Y., Fisher, J.B., et al. (2017) Response of Water Use Efficiency to Global Environmental Change Based on Output from Terrestrial Biosphere Models. Global Biogeochemical Cycles, 31, 1639-1655. https://doi.org/10.1002/2017GB005733 |
[5] | Zhou, S., Yu, B., Huang, Y. and Wang, G. (2014) The Effect of Vapor Pressure Deficit on Water Use Efficiency at the Subdaily Time Scale. Geophysical Research Letters, 41, 5005-5013. https://doi.org/10.1002/2014GL060741 |
[6] | Yuan, R., Chang, L. and Niu, G. (2021) Annual Variations of T/ET in a Semi-Arid Region: Implications of Plant Water Use Strategies. Journal of Hydrology, 603, Article ID: 126884. https://doi.org/10.1016/j.jhydrol.2021.126884 |
[7] | Zhou, S., Yu, B., Zhang, Y., Huang, Y. and Wang, G. (2016) Partitioning Evapotranspiration Based on the Concept of Underlying Water Use Efficiency. Water Resources Research, 52, 1160-1175. https://doi.org/10.1002/2015WR017766 |
[8] | Zhou, S., Yu, B., Zhang, Y., Huang, Y. and Wang, G. (2018) Water Use Efficiency and Evapotranspiration Partitioning for Three Typical Ecosystems in the Heihe River Basin, Northwestern China. Agricultural and Forest Meteorology, 253-254, 261-273. https://doi.org/10.1016/j.agrformet.2018.02.002 |
[9] | Scott, R.L. and Biederman, J.A. (2017) Partitioning Evapotranspiration Using Long-Term Carbon Dioxide and Water Vapor Fluxes. Geophysical Research Letters, 44, 6833-6840. https://doi.org/10.1002/2017GL074324 |
[10] | Wutzler, T., Lucasmoffat, A., Migliavacca, M., Knauer, Jürgen, Sickel, K., ?igut, L., Menzer, O. and Reichstein, M. (2018) Basic and Extensible Post-Processing of Eddy Covariance Flux Data with Reddyproc. Biogeosciences, 15, 5015-5030. https://doi.org/10.5194/bg-15-5015-2018 |
[11] | Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T. and Yakir, D. (2006) Towards a Standardized Processing of Net Ecosystem Exchange Measured with Eddy Covariance Technique: Algorithms and Uncertainty Estimation. Biogeosciences, 3, 571-583.
https://doi.org/10.5194/bg-3-571-2006 |
[12] | Reichstein, M., Falge, E., Baldocchi, D., et al. (2005) On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Global Change Biology, 11, 1424-1439.
https://doi.org/10.1111/j.1365-2486.2005.001002.x |
[13] | Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A., et al. (2010) Separation of Net Ecosystem Exchange into Assimilation and Respiration Using a Light Response Curve Approach: Critical Issues and Global Evaluation. Biogeosciences, 16, 187-208. https://doi.org/10.1111/j.1365-2486.2009.02041.x |
[14] | 冯丽丽. 北半球主要生态类型植被水分利用效率的变化特征及影响因子分析[D]: [硕士学位论文]. 兰州: 兰州大学, 2017. |
[15] | 仇宽彪. 中国植被总初级生产力、蒸散发及水分利用效率的估算及时空变化[D]: [博士学位论文]. 北京: 北京林业大学, 2015. |
[16] | 宋春林, 孙向阳, 王根绪. 森林生态系统碳水关系及其影响因子研究进展[J]. 应用生态学报, 2015, 26(9): 2891-2902. |
[17] | Wang, Q.F., Niu, D., Yu, G.R., et al. (2004) Simulation of CO2 and Water thermal Fluxin Changbaishan Forest Ecosystem. Science in China Series D: Earth Sciences, 34, 131-140. |