|
肠膜明串珠菌(Leuconostoc mesenteroides subsp. cremoris) GKM5降血糖活性评估
|
Abstract:
本篇研究评估肠膜明串珠菌(Leuconostoc mesenteroides subsp. cremoris) GKM5对于降血糖活性的潜力。第一部分为评估血糖管理潜力。将ICR雄性小鼠分为实验组(Live-GKM5)及对照组(Control),管喂十四天菌株GKM5后,进行口服葡萄糖耐受性试验(oral glucose tolerance test, OGTT)。结果发现实验组的120分钟血糖曲线下面积(area under the curve, AUC)明显地低于对照组,显示肠膜明串珠菌GKM5的摄取可改善ICR小鼠的葡萄糖耐受性,有助于提升葡萄糖敏感性。第二部分为评估菌株GKM5对于糖尿病高风险族群的血糖管理能力。经链脲佐菌素(streptozotocin, STZ)诱导糖尿病高风险群的ICR雄性小鼠分别给予肠膜明串珠菌GKM5活菌(Live-GKM5)或死菌(Killed-GKM5),以及水作为对照组(Control),十四天后,测定空腹血糖值(fasting blood glucose, FBG)及血中发炎因子白血球介素-6 (Interleukin 6, IL-6)含量。结果发现肠膜明串珠菌GKM5之活菌可明显改善空腹血糖值及血中发炎因子IL-6含量,而肠膜明串珠菌GKM5之死菌,虽然效果较活菌不明显,仍能在介入十四天后降低空腹血糖值及血中发炎因子IL-6含量。综观上述,本篇以动物试验证实肠膜明串珠菌GKM5之摄取确实对糖尿病管理有所帮助,且GKM5死菌降血糖的功效对于未来医药用途可更为广泛。
This study evaluated the potential of Leuconostoc mesenteroides subsp. cremoris GKM5 for hypoglycemic ac-tivity. The first part is to assess the potential of blood glucose management. The ICR male mice were divided into an experimental group (Live-GKM5) and a control group. After fourteen days of gavage with strain GKM5, oral glucose tolerance test (OGTT) was performed. The results showed that the area under the curve (AUC) of the 120-minute blood glucose in the experimental group was signifi-cantly lower than that in the trol group, indicating that the intake of L. mesenteroides GKM5 could improve the glucose tolerance of ICR mice and help improve the glucose sensitivity. The second part is to evaluate the blood glucose management ability of the strain GKM5 in high-risk groups of dia-betes. ICR male mice in the high-risk of diabetes induced by streptozotocin (STZ) were given live (Live-GKM5) or dead bacterialstain GKM5 (Killed-GKM5), and water as a control group, respectively. After 14 days, the fasting blood glucose (FBG) and the inflammatory factor interleukin-6 (IL-6) level in the blood were measured. The results showed that the live bacteria of L. mesenteroides GKM5 can significantly reduce the FBG level and the serumIL-6. Although the effect of Killed-GKM5 is less than the Live-GKM5, it still canreducetheFBGandserumIL-6 at day 14th. Tosummarize, this article con-firmed by animal experiments that the intake of L. mesenteroides GKM5 is indeed helpful for dia-betes management, and the hypoglycemic effect of Killed-GKM5 could be more widely used in future medicine.
[1] | Atkinson, M.A. and Eisenbarth, G.S. (2001) Type 1 Diabetes: New Perspectives on Disease Pathogenesis and Treatment. The Lancet, 358, 221-229. https://doi.org/10.1016/S0140-6736(01)05415-0 |
[2] | Asif, M. (2014) The Prevention and Control the Type-2 Diabetes by Changing Lifestyle and Dietary Pattern. Journal of Education and Health Promotion, 3, Article No. 1. https://doi.org/10.4103/2277-9531.127541 |
[3] | Lin, S.W., Shu, J.R., Chang, W.T., Wang, C.S., Zhao, C., Chen, Y.L., Hsu, C.L. and Chen, C.C. (2017) Effect of Lactobacillus plantarum GKM3 on Obesity in High-Fat Diet-Induced Rats. Hans Journal of Food and Nutrition Science, 6, 85-95. https://doi.org/10.12677/HJFNS.2017.62009 |
[4] | Hou, Y.H., Lin, S.W., Zhao, C., Lu, H.C., Chen, Y.L., Lin, W.H. and Chen, C.C. (2019) Effect of Bifidobacteriumlactis GKK2 on OVA-Induced Asthmatic Mice. Hans Journal of Food and Nutrition Science, 9, 70-80.
https://doi.org/10.12677/HJBM.2019.92011 |
[5] | Shih, Y.T., Lin, S.W., Wang, C.S., Chen, Y.L., Lin, W.H., Tsai, P.C. and Chen, C.C. (2019) Effect of Probiotic Lactobacillus plantarum GKM3 on OVA-Induced Asthma in Mice. Journal of Testing and Quality Assurance, 8, 58-66. |
[6] | Lin, C.W., Tsai, Y.S., Lin, S.W., Wu, W.S., Chen, Y.L. and Chen, C.C. (2022) Evaluation of the Effectiveness of 13 Complex Probiotics in Regulating Allergies. Hans Journal of Food and Nutrition Science, 12, 85-96.
https://doi.org/10.12677/HJBM.2022.122011 |
[7] | Lin, S.W., Chen, Y.L., Hsu, S.C., Lin, X.Z. and Chen, C.C. (2017) The Safety of Probiotics for Patient with Cirrhosis-Related Portal Hypertension: Clinical Studies. Journal of Testing and Quality Assurance, 6, 1-7. |
[8] | Tsai, Y.S., Lin, S.W., Chen, Y.L. and Chen, C.C. (2020) Effect of Probiot-ics Lactobacillus paracasei GKS6, L. plantarum GKM3, and L. rhamnosus GKLC1 on Alleviating Alcohol-Induced Alcoholic Liver Disease in a Mouse Model. Nutrition Research and Practice, 14, 299-308. https://doi.org/10.4162/nrp.2020.14.4.299 |
[9] | Lin, S.W., Wang, C.S., Chiu, C.H., Lee, C.W., Zhao, C., Chen, Y.L. and Chen, C.C. (2021) A Screen for a Novel Psychobiotic Strain Modulating Monoamine Neurotransmitter. Hans Jour-nal of Food and Nutrition Science, 11, 1-7.
https://doi.org/10.12677/HJBM.2021.111001 |
[10] | Chen, Y.P., Lin, S.W., Chen, Y.L., Chiu, C.H. and Chen, C.C. (2021) A Novel Psychobiotic-Levilactobacillus (Lactobacillus) Brevis GKJOY Capable of Modulating Monoamine Neurotransmitter. Journal of Testing and Quality Assurance, 10, 92-98. |
[11] | Shih, Y.T., Lin, S.W., Chiu, C.H., Chen, Y.L., Chen, C.C. (2021) Anti-Depression and Anti-Inflammation Effects of the Probiotic Limosilactobacillus fermentum GKF3 in Mice with Restraint Stress. Journal of Testing and Quality Assurance, 10, 145-151. |
[12] | Wang, C.S., Lin, S.W., Zhao, C., Chen, Y.L., Tsai, P.C. and Chen, C.C. (2019) Hypoglycemic Effect of Lactobacillus paracasei GKS6. Hans Journal of Food and Nutrition Science, 8, 9-16. https://doi.org/10.12677/HJFNS.2019.81002 |
[13] | Hsieh, P.S., Ho, H.H., Hsieh, S.H., Kuo, Y.W., Tseng, H.Y., Kao, H.F. and Wang, J.Y. (2020) Lactobacillus salivarius AP-32 and Lactobacillus reuteri GL-104 Decrease Glycemic Levels and Attenuate Diabetes-Mediated Liver and Kidney Injury in db/db Mice. BMJ Open Diabetes Research & Care, 8, e001028.
https://doi.org/10.1136/bmjdrc-2019-001028 |
[14] | Wang, C.H., Yen, H.R., Lu, W.L., Ho, H.H., Lin, W.Y., Kuo, Y.W., Huang, Y.Y., Tsai, S.Y. and Lin, H.C. (2022) Adjuvant Probiotics of Lactobacillus salivarius subsp. salicinius AP-32, L. johnsonii MH-68, and Bifidobacterium animalis subsp. lactis CP-9 Attenuate Glycemic Levels and Inflam-matory Cytokines in Patients with Type 1 Diabetes Mellitus. Frontiers in Endocrinology, 13, Article ID: 754401. https://doi.org/10.3389/fendo.2022.754401 |
[15] | 李文斌, 宋敏麗, 高榮琨, 等. 腸膜明串珠菌的研究和應用進展[J]. 食品工程, 2006(4): 3-4, 11.
https://doi.org/10.3969/j.issn.1673-6044.2006.04.001 |
[16] | He, J., Zhang, P., Shen, L., Niu, L., Tan, Y., Chen, L., Zhao, Y., Bai, L., Hao, X., Li, X., Zhang, S. and Zhu, L. (2020) Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. International Journal of Molecular Sciences, 21, Article No. 6356. https://doi.org/10.3390/ijms21176356 |
[17] | Castro-Rodríguez, D.C., Reyes-Castro, L.A., Vega, C.C., Rodríguez-González, G.L., Yá?ez-Fernández, J. and Zambrano, E. (2020) Leuconostoc mesenteroides subsp. Mesenteroides SD23 Prevents Metabolic Dysfunction Associated with High-Fat Diet-Induced Obesity in Male Mice. Probiotics and Antimicrobial Proteins, 12, 505-516.
https://doi.org/10.1007/s12602-019-09556-3 |
[18] | Choi, S.Y., Ryu, S.H., Park, J.I., Jeong, E.S., Park, J.H., Ham, S.H., Jeon, H.Y., Kim, J.Y., Kyeong, I.G., Kim, D.G., Shin, J.Y. and Choi, Y.K. (2017) Anti-Obesity Effect of Robusta Fermented with Leuconostoc mesenteroides in High-Fat Diet-Induced Obese Mice. Experimental and Therapeutic Medi-cine, 14, 3761-3767.
https://doi.org/10.3892/etm.2017.4990 |
[19] | Johanningsmeier, S., McFeeters, R.F., Fleming, H.P. and Thompson, R.L. (2007) Effects of Leuconostoc mesenteroides Starter Culture on Fermentation of Cabbage with Reduced Salt Con-centrations. Journal of Food Science, 72, M166-M172. https://doi.org/10.1111/j.1750-3841.2007.00372.x |
[20] | Duckworth, W.C., Bennett, R.G. and Hamel, F.G. (1998) Insulin Degradation: Progress and Potential. Endocrine Reviews, 19, 608-624. https://doi.org/10.1210/edrv.19.5.0349 |
[21] | Yang, J.J., Rahim, A.R., Yang, A.J., Chuang, T.H. and Huang, C.M. (2020) Production of Electricity and Reduction of High-Fat Diet-Induced IL-6 by Glucose Fermentation of Leuconostoc mesenteroides. Biochemical and Biophysical Research Communications, 533, 651-656. https://doi.org/10.1016/j.bbrc.2020.09.105 |