A regional groundwater quality evaluation was conducted in the deep Maastrichtian aquifer of Senegal through multivariate statistical analysis and a GIS-based water quality index using physicochemical data from 232 boreholes distributed over the whole country. The aim was to 1) identify the water types and likely factors influencing the hydrochemistry, and 2) determine the suitability of groundwater for drinking and irrigation. Results showed that sodium, chloride, and fluoride are highly correlated with electrical conductivity (EC) reflecting the significant contribution of these elements to groundwater mineralization. The principal component analysis evidenced: 1) salinization processes (loaded by Na+, K+, EC, Cl-, F- and HCO3-) controlled by water/rock interaction, seawater intrusion and cation exchange reactions; 2) dolomite dissolution loaded by the couple Ca2+ and Mg2+ and 3) localized mixing with upper aquifers and gypsum dissolution respectively loaded by NO3- and SO42-. The hierarchical clustering analysis distinguished four clusters: 1) freshwater (EC = 594 μs/cm) with mixed-HCO3 water type and ionic contents below WHO standard; 2) brackish (Na-mixed) water type with moderate mineralization content (1310 μs/cm), 3) brackish (Na-Cl) water type depicted by high EC values (3292 μs/cm) and ionic contents above WHO and 4) saline water with Na-Cl water type and very high mineralization contents (5953 μs/cm). The mapping of the groundwater quality index indicated suitable zones for drinking accounting for 54% of the entire area. The occurrence of a central brackish band and its vicinity, which were characterized by high mineralization, yielded unsuitable groundwater for drinking and agricultural uses. The approach used in this study was valuable for assessing groundwater quality for drinking and irrigation, and it can be used for regional studies in other locations, particularly in shallow and vulnerable aquifers.
References
[1]
Benneyworth, L., et al. (2016) Drinking Water Insecurity: Water Quality and Access in Coastal South-Western Bangladesh. International Journal of Environmental Health Research, 26, 508-524. https://doi.org/10.1080/09603123.2016.1194383
[2]
MacDonald, A.M., Bonsor, H.C., Dochartaigh, B.é.ó. and Taylor, R.G. (2012) Quantitative Maps of Groundwater Resources in Africa. Environmental Research Letters, 7, Article ID: 024009. https://doi.org/10.1088/1748-9326/7/2/024009
[3]
Altchenko, Y., et al. (2011) Management of Ground Water in Africa Including Transboundary Aquifers: Implications for Food Security, Livelihood and Climate Change Adaptation. PhD Thesis, United Nations Economic Commission for Africa-African Climate Policy Centre.
[4]
Lapworth, D.J., et al. (2017) Urban Groundwater Quality in Sub-Saharan Africa: Current Status and Implications for Water Security and Public Health. Hydrogeology Journal, 25, 1093-1116. https://doi.org/10.1007/s10040-016-1516-6
[5]
Simeonov, V., et al. (2003) Assessment of the Surface Water Quality in Northern Greece. Water Research, 37, 4119-4124. https://doi.org/10.1016/S0043-1354(03)00398-1
[6]
Subramani, T., Elango, L. and Damodarasamy, S.R. (2005) Groundwater Quality and Its Suitability for Drinking and Agricultural Use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47, 1099-1110. https://doi.org/10.1007/s00254-005-1243-0
[7]
Aravindan, S. and Shankar, K. (2011) Groundwater Quality in Paravanar River Sub-Basin, Cuddalore District, Tamil Nadu, India. Journal of the Indian Society of Remote Sensing, 39, 565-581. https://doi.org/10.1007/s12524-011-0152-9
[8]
Shankar, K., Aravindan, S. and Rajendran, S. (2011) Hydrogeochemistry of the Paravanar River Sub-Basin, Cuddalore District, Tamilnadu, India. E-Journal of Chemistry, 8, 835-845. https://doi.org/10.1155/2011/107261
[9]
Li, P., et al. (2016) Hydrogeochemical Characterization of Groundwater in and around a Wastewater Irrigated Forest in the Southeastern Edge of the Tengger Desert, Northwest China. Exposure and Health, 8, 331-348. https://doi.org/10.1007/s12403-016-0193-y
[10]
Mahlknecht, J., Merchán, D., Rosner, M., Meixner, A. and Ledesma-Ruiz, R. (2017) Assessing Seawater Intrusion in an Arid Coastal Aquifer under High Anthropogenic Influence Using Major Constituents, Sr and B Isotopes in Groundwater. Science of the Total Environment, 587, 282-295. https://doi.org/10.1016/j.scitotenv.2017.02.137
[11]
Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S. and Von Maltitz, G. (2018) World Atlas of Desertification Rethinking Land Degradation and Sustainable Land Management. Publication Office of the European Union, Luxembourg.
[12]
Audibert, M. (1962) Hydrogéologie de la nappe maastrichtienne du Sénégal. Rapport BRGM Dak 62-A14.
[13]
World Bank (2020) Sécurité de l’eau au Sénégal. World Bank, Washington DC.
[14]
DGPRE (2013) PAGIRE-BA. Etudes hydrogéologiques pour l’évaluation des potentialités des ressources en eau des zones favorables en vue d’un transfert d’eau vers la zone du Bassin Ara-chidier.
[15]
DGPRE (2019) Projet d’alimentation des services d’eau potable et d’assainissement en milieu rural: Atlas de l’eau du Sénégal.
[16]
Faye, A. (1994) Recharge et palaeorecharge des aquifères profonds du bassin du Senegal. Apport des isotopes stables et radioactifs de l’environnement et implications palaeohydrologiqes et palaeoclimatiques. PhD Thesis, Thesis Doc. ès Sciences, Université Cheikh Anta Diop, Dakar.
[17]
Madioune, D.H., et al. (2014) Application of Isotopic Tracers as a Tool for Understanding Hydrodynamic Behavior of the Highly Exploited Diass Aquifer System (Senegal). Journal of Hydrology, 511, 443-459. https://doi.org/10.1016/j.jhydrol.2014.01.037
[18]
SGPRE and COWI (2001) Etude hydrogéologique de la nappe profonde du Maastrichtien: Service de Gestion et de Planification des Ressources en Eau (SGPRE)-Groupement Cowi Polyconsult. Projet Sectoriel Eau.
[19]
Travi, Y. (1993) Hydrogéologie et hydrochimie des aquifères du Sénégal. Hydro-géochimie du fluor dans les eaux souterraines, 95. Persée-Portail des revues scientifiques en SHS.
[20]
Bodrud-Doza, Md., Islam, A.R.M.T., Ahmed, F., Das, S., Saha, N. and Rahman, M.S. (2016) Characterization of Groundwater Quality Using Water Evaluation Indices, Multivariate Statistics and Geo-Statistics in Central Bangladesh. Water Science, 30, 19-40. https://doi.org/10.1016/j.wsj.2016.05.001
[21]
Singovszka, E. and Balintova, M. (2012) Application Factor Analysis for the Evaluation Surface Water and Sediment Quality. Chemical Engineering Transactions, 26, 183-188.
[22]
Okiongbo, K.S. and Douglas, R.K. (2015) Evaluation of Major Factors Influencing the Geochemistry of Groundwater Using Graphical and Multivariate Statistical Methods in Yenagoa City, Southern Nigeria. Applied Water Science, 5, 27-37. https://doi.org/10.1007/s13201-014-0166-x
[23]
Tiwari, T.N. and Mishra, M.A. (1985) A Preliminary Assignment of Water Quality Index of Major Indian Rivers. Indian Journal of Environmental Protection, 5, 276-279.
[24]
Singh, D.F. (1992) Studies on the Water Quality Index of Some Major Rivers of Pune, Maharashtra. Proceedings of the Academy of Environmental Biology, 1, 61-66.
[25]
Mishra, P.C. and Patel, R.K. (2001) Study of the Pollution Load in the Drinking Water of Rairangpur, a Small Tribal Dominated Town of North Orissa. Indian Journal of Environment and Ecoplanning, 5, 293-298.
[26]
Rao, N.S., Rao, P.S., Reddy, G.V., Nagamani, M., Vidyasagar, G. and Satyanarayana, N. (2012) Chemical Characteristics of Groundwater and Assessment of Groundwater Quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184, 5189-5214. https://doi.org/10.1007/s10661-011-2333-y
[27]
Semiromi, F.B., Hassani, A.H., Torabian, A., Karbassi, A.R. and Lotfi, F.H. (2011) Evolution of a New Surface Water Quality Index for Karoon Catchment in Iran. Water Science and Technology, 64, 2483-2491. https://doi.org/10.2166/wst.2011.780
[28]
Sadat-Noori, S.M., Ebrahimi, K. and Liaghat, A.M. (2014) Groundwater Quality Assessment Using the Water Quality Index and GIS in Saveh-Nobaran Aquifer, Iran. Environmental Earth Sciences, 71, 3827-3843. https://doi.org/10.1007/s12665-013-2770-8
[29]
Bozdağ, A. (2015) Combining AHP with GIS for Assessment of Irrigation Water Quality in Çumra Irrigation District (Konya), Central Anatolia, Turkey. Environmental Earth Sciences, 73, 8217-8236. https://doi.org/10.1007/s12665-014-3972-4
[30]
Meireles, A.C.M., de Andrade, E.M., Chaves, L.C.G., Frischkorn, H. and Crisostomo, L.A. (2010) A New Proposal of the Classification of Irrigation Water. Revista Ciência Agronômica, 41, 349-357. https://doi.org/10.1590/S1806-66902010000300005
[31]
Saeedi, M., Abessi, O., Sharifi, F. and Meraji, H. (2010) Development of Groundwater Quality Index. Environmental Monitoring and Assessment, 163, 327-335. https://doi.org/10.1007/s10661-009-0837-5
[32]
Brindha, K., Pavelic, P. and Sotoukee, T. (2019) Environmental Assessment of Water and Soil Quality in the Vientiane Plain, Lao PDR. Groundwater for Sustainable Development, 8, 24-30. https://doi.org/10.1016/j.gsd.2018.08.005
[33]
Li, P., Wu, J. and Qian, H. (2013) Assessment of Groundwater Quality for Irrigation Purposes and Identification of Hydrogeochemical Evolution Mechanisms in Pengyang County, China. Environmental Earth Sciences, 69, 2211-2225. https://doi.org/10.1007/s12665-012-2049-5
[34]
Le Priol, J. and Dieng, B. (1985) Synthèse hydrogéologique du Sénégal (1984-1985). Etude géologique structurale par photo-interprétation. Géométrie et limites des aquifères souterrains. Rap. Min. Hydraul. 0l/85fMHIDEH.
[35]
Kaiser, H.F. (1960) The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20, 141-151. https://doi.org/10.1177/001316446002000116
[36]
Ward, J.H. (1963) Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244. https://doi.org/10.1080/01621459.1963.10500845
[37]
Burrough, P.A., McDonnell, R.A. and Lloyd, C.D. (2015) Principles of Geographical Information Systems. Oxford University Press, Oxford.
[38]
WHO (2014) Guidelines for Drinking-Water Quality. WHO Chronicle, 38, 104-108.
[39]
Pradhan, S.K., Patnaik, D. and Rout, S.P. (2001) Water Quality Index for the Ground Water around a Phosphatic Fertilizer Plant. Indian Journal of Environmental Protection, 21, 355-358.
[40]
Asadi, S.S., Vuppala, P. and Reddy, M.A. (2007) Remote Sensing and GIS Techniques for Evaluation of Groundwater Quality in Municipal Corporation of Hyderabad (Zone-V), India. International Journal of Environmental Research and Public Health, 4, 45-52. https://doi.org/10.3390/ijerph2007010008
[41]
Yidana, S.M. and Yidana, A. (2010) Assessing Water Quality Using Water Quality Index and Multivariate Analysis. Environmental Earth Sciences, 59, 1461-1473. https://doi.org/10.1007/s12665-009-0132-3
[42]
Saaty, T. (1980) The Analytic Hierarchy Process (AHP) for Decision Making. Kobe, Japan, 1-69.
[43]
Gassama, A.J., Diongue, D.M., Emvoutou, H.C., Mama, D. and Faye, S. (2020) Groundwater Recharge Zone Mapping Using GIS-Based Analytical Hierarchy Process and Multi-Criteria Evaluation: Case Study of Greater Banjul Area. American Journal of Water Resources, 8, 182-190. https://doi.org/10.12691/ajwr-8-4-4
[44]
Goepel, K.D. (2018) Implementation of an Online Software Tool for the Analytic Hierarchy Process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10. https://doi.org/10.13033/ijahp.v10i3.590
[45]
Herojeet, R., Rishi, M.S., Lata, R. and Sharma, R. (2016) Application of Environmetrics Statistical Models and Water Quality Index for Groundwater Quality Characterization of Alluvial Aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustainable Water Resources Management, 2, 39-53. https://doi.org/10.1007/s40899-015-0039-y
[46]
Wilcox, L. (1955) Classification and Use of Irrigation Waters. US Department of Agriculture, Washington DC.
[47]
Seth, R., et al. (2015) Assessment of Seasonal Variations in Surface Water Quality of Bageshwar District, Uttarakhand, India for Drinking and Irrigation Purposes. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 85, 283-293. https://doi.org/10.1007/s40010-014-0195-8
[48]
Shabbir, R. and Ahmad, S.S. (2015) Use of Geographic Information System and Water Quality Index to Assess Groundwater Quality in Rawalpindi and Islamabad. Arabian Journal for Science and Engineering, 40, 2033-2047. https://doi.org/10.1007/s13369-015-1697-7
[49]
Islam, M.A., et al. (2018) A Study of Groundwater Irrigation Water Quality in South-Central Bangladesh: A Geo-Statistical Model Approach Using GIS and Multivariate Statistics. Acta Geochimica, 37, 193-214. https://doi.org/10.1007/s11631-017-0201-3
[50]
Faye, S., Faye, S.C., Ndoye, S. and Faye, A. (2003) Hydrogeochemistry of the Saloum (Senegal) Superficial Coastal Aquifer. Environmental Geology, 44, 127-136. https://doi.org/10.1007/s00254-002-0749-y
[51]
Mohamed, M.L., Diongue, D.M., Emvoutou, H.C., Mohamed, A.S., Jiddou, M. and Faye, S. (2020) Salinization Processes in the Benichab Coastal Aquifer-Mauritania. International Journal of Geosciences, 11, 377-392. https://doi.org/10.4236/ijg.2020.116020
[52]
Agoubi, B. (2021) A Review: Saltwater Intrusion in North Africa’s Coastal Areas-Current State and Future Challenges. Environmental Science and Pollution Research, 28, 17029-17043. https://doi.org/10.1007/s11356-021-12741-z
[53]
Mastrocicco, M. and Colombani, N. (2021) The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review. Water, 13, Article No. 90. https://doi.org/10.3390/w13010090
[54]
Schoeller, H. (1962) Geochimie des eaux souterraines: Application aux eaux des gisements de petrole. Revue de l’institut Francais du pertole et annales des combustibles liquides.
[55]
Hem, J.D. (1985) Study and Interpretation of the Chemical Characteristics of Natural Water. No. 2254, Department of the Interior, US Geological Survey, Reston.
[56]
Carol, E., Kruse, E. and Mas-Pla, J. (2009) Hydrochemical and Isotopical Evidence of Ground Water Salinization Processes on the Coastal Plain of Samborombón Bay, Argentina. Journal of Hydrology, 365, 335-345. https://doi.org/10.1016/j.jhydrol.2008.11.041
[57]
Sajil Kumar, P.J. and James, E.J. (2016) Identification of Hydrogeochemical Processes in the Coimbatore District, Tamil Nadu, India. Hydrological Sciences Journal, 61, 719-731. https://doi.org/10.1080/02626667.2015.1022551
[58]
Todd, K. (1959) Groundwater Hydrology. John Wiley & Sons, New York.
[59]
Travi, Y. (1988) Hydrogéochimie et hydrogéologie des aquifères fluorés du bassin du Sénégal. Origine et conditions de transport du fluor dans les eaux souterraines. PhD Thesis, Sci. Univ. Paris Sud (Orsay), Paris, 190 p.
[60]
Ouarekh, M., Bouselsal, B., Belksier, M.S. and Benaabidate, L. (2021) Water Quality Assessment and Hydrogeochemical Characterization of the Complex Terminal Aquifer in Souf Valley, Algeria. Arabian Journal of Geosciences, 14, Article No. 2239. https://doi.org/10.1007/s12517-021-08498-x
[61]
Trenous, J.-Y. and Michel, P. (1971) Etude de la structure du dome de Guier (Senegal nord-occidental). Bulletin de la Société Géologique de France, S7, 133-139. https://doi.org/10.2113/gssgfbull.S7-XIII.1-2.133
[62]
Boujo, A., et al. (1980) The Early Eocene of the Lake of Guiers (Western Senegal)—Reflections on Some Characteristics of Phosphate Sedimentation in Senegal. In: Bentor, Y.K., Ed., Marine Phosphorites—Geochemistry, Occurrence, Genesis, SEPM Society for Sedimentary Geology, Reston, 207-213. https://doi.org/10.2110/pec.80.29.0207
[63]
Xiao, Y., Liu, K., Hao, Q., Li, Y., Xiao, D. and Zhang, Y. (2022) Occurrence, Controlling Factors and Health Hazards of Fluoride-Enriched Groundwater in the Lower Flood Plain of Yellow River, Northern China. Exposure and Health, 14, 345-358. https://doi.org/10.1007/s12403-021-00452-2
[64]
Wang, Z., Guo, H., Xing, S. and Liu, H. (2021) Hydrogeochemical and Geothermal Controls on the Formation of High Fluoride Groundwater. Journal of Hydrology, 598, Article ID: 126372. https://doi.org/10.1016/j.jhydrol.2021.126372
[65]
Hu, Y., You, M., Liu, G. and Dong, Z. (2021) Spatial Distribution and Potential Health Risk of Fluoride in Drinking Groundwater Sources of Huaibei, Anhui Province. Scientific Reports, 11, Article No. 8371. https://doi.org/10.1038/s41598-021-87699-6
[66]
Alrajhi, A., Beecham, S., Bolan, N.S. and Hassanli, A. (2015) Evaluation of Soil Chemical Properties Irrigated with Recycled Wastewater under Partial Root-Zone Drying Irrigation for Sustainable Tomato Production. Agricultural Water Management, 161, 127-135. https://doi.org/10.1016/j.agwat.2015.07.013
[67]
Ganjegunte, G.K., et al. (2017) Soil Salinity of an Urban Park after Long-Term Irrigation with Saline Ground Water. Agronomy Journal, 109, 3011-3018. https://doi.org/10.2134/agronj2017.06.0369
[68]
Ravikumar, P., Somashekar, R.K. and Angami, M. (2011) Hydrochemistry and Evaluation of Groundwater Suitability for Irrigation and Drinking Purposes in the Markandeya River Basin, Belgaum District, Karnataka State, India. Environmental Monitoring and Assessment, 173, 459-487. https://doi.org/10.1007/s10661-010-1399-2