全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phytoaccumulation Potential of Three Endogenous Poaceae Species Grown on the Akouedo Landfill (Abidjan, C?te d’Ivoire)

DOI: 10.4236/jep.2022.1311050, PP. 779-796

Keywords: Trace Metals, Phytoaccumulation, Poaceae, Landfill

Full-Text   Cite this paper   Add to My Lib

Abstract:

The selection of adequate plant species is a prerequisite for cleaning-up trace metal contaminated-soils by phytoaccumulation which is a cost-effective and environmentally-friendly technology. The potential of Panicum maximum, Eleusine indica and Cynodon dactylon to uptake trace metals from the soil of the Akouedo landfill was investigated. The concentrations of trace metals in soil were also considered. Moreover, the accumulation of Zn, Ni, Cu, Pb and Cd was assessed based on bioconcentration factor, translocation factor. The results showed high concentration values in the soil of the abandoned and the operation site of the landfill compare to the control site. The highest concentrations of trace metals in the plant shoot were observed with P. maximum for Ni. In root biomass, Zn, Cu and Cd showed high concentrations with P. maximum, E. indica and C. dactylon. Furthermore, the highest values of bioconcentration factor (BCF) and the translocation factor (TF) for Ni, were respectively 111.98 ± 82.45 and 4.26 ± 1.75 and were recorded with P. maximum. P. maximum, suggesting that it can be considered as a Ni hyperaccumulator.

References

[1]  Khan, M.A., Khan, S., Khan, A. and Alam, M. (2017) Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Science of the Total Environment, 601-602, 1591-1605.
https://doi.org/10.1016/j.scitotenv.2017.06.030
[2]  Ali, H., Khan, E. and Ilahi, I. (2019) Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 4, 1-14.
https://doi.org/10.1155/2019/6730305
[3]  Zeng, P., Guo, Z., Cao, X., Xiao, X., Liu, Y. and Shi, L. (2018) Phytostabilization Potential of Ornamental Plants Grown in Soil Contaminated with Cadmium. International Journal of Phytoremediation, 20, 311-320.
https://doi.org/10.1080/15226514.2017.1381939
[4]  Mao, X., Jiang, R., Xiao, W. and Yu, J. (2015) Use of Surfactants for the Remediation of Contaminated Soils: A Review. Journal of Hazardous Materials, 285, 419-435.
https://doi.org/10.1016/j.jhazmat.2014.12.009
[5]  Ye, S., Zeng, G., Wu, H., Zhang, C., Dai, J., Liang, J., et al. (2017) Biological Technologies for the Remediation of Co-Contaminated Soil. Critical Reviews in Biotechnology, 37, 1062-1076.
https://doi.org/10.1080/07388551.2017.1304357
[6]  Wang, Q.R., Cui, Y.S., Liu, X.M., Dong, Y.T. and Christie, P. (2003) Soil Contamination and Plant Uptake of Heavy Metals at Polluted Sites in China. Journal of Environmental Science and Health, Part A, 38, 823-838.
https://doi.org/10.1081/ESE-120018594
[7]  Chen, L., Luo, S., Li, X., Wan, Y., Chen, J. and Liu, C. (2014) Interaction of Cd-Hyperaccumulator Solanum nigrum L. and Functional Endophyte Pseudomonas sp. Lk9 on Soil Heavy Metals Uptake. Soil Biology and Biochemistry, 68, 300-308.
https://doi.org/10.1016/j.soilbio.2013.10.021
[8]  Lasat, M.M. (1999) Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues. Journal of Hazardous Substance Research, 2, Article No. 5.
https://doi.org/10.4148/1090-7025.1015
[9]  Ghosh, M. and Singh, S.P. (2005a) A Review on Phytoremediation of Heavy Metals and Utilization of Its Byproducts. Applied Ecology and Environmental Research, 3, 1-18.
https://doi.org/10.15666/aeer/0301_001018
[10]  Mench, M.J., Didier, V.L., Loffler, M., Gomez, A. and Masson, P. (1994) A Mimicked In-Situ Remediation Study of Metal-Contaminated Soils with Emphasis on Cadmium and Lead. Journal of Environmental Quality, 23, 785-792.
https://doi.org/10.2134/jeq1994.00472425002300010010x
[11]  Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I. and Dumat, C. (2017) A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. Journal of Geochemical Exploration, 182, 247-268.
https://doi.org/10.1016/j.gexplo.2016.11.021
[12]  Zloch, M., Kowalkowski, T., Tyburski, J. and Hrynkiewicz, K. (2017) Modeling of Phytoextraction Efficiency of Microbially Stimulated Salix dasyclados L. in the Soils with Different Speciation of Heavy Metals. International Journal of Phytoremediation, 19, 1150-1164.
https://doi.org/10.1080/15226514.2017.1328396
[13]  Ahmad, R., Tehsin, Z., Malik, S.T., Asad, S.A., Shahzad, M., Bilal, M., Shah, M.M. and Khan, S.A. (2016) Phytoremediation Potential of Hemp (Cannabis sativa L.): Identification and Characterization of Heavy Metals Responsive Genes. Clean— Soil, Air, Water, 44, 195-201.
https://doi.org/10.1002/clen.201500117
[14]  Xiao, R., Ali, A., Wang, P., Li, R., Tian, X. and Zhang, Z. (2019) Comparison of the Feasibility of Different Washing Solutions for Combined Soil Washing and Phytoremediation for the Detoxification of Cadmium (Cd) and Zinc (Zn) in Contaminated Soil. Chemosphere, 230, 510-518.
https://doi.org/10.1016/j.chemosphere.2019.05.121
[15]  Raskin, I., Smith, R.D. and Salt, D.E. (1997) Phytoremediation of Metals: Using Plants to Remove Pollutants from the Environment. Current Opinion in Biotechnology, 8, 221-226.
https://doi.org/10.1016/S0958-1669(97)80106-1
[16]  Zhu, Y.G. and Shaw, G. (2000) Soil Contamination with Radionuclides and Potential Remediation. Chemosphere, 41, 121-128.
https://doi.org/10.1016/S0045-6535(99)00398-7
[17]  Wei, S.H., Niu, R.C., Srivastava, M., Zhou, Q.X., Wu, Z.J., Sun, T.H., Hu, Y.H. and Li, Y.M. (2009) Bidens tripartite L.: A Cd-Accumulator Confirmed by Pot Culture and Site Sampling Experiment. Journal of Hazardous Materials, 170, 1269-1272.
https://doi.org/10.1016/j.jhazmat.2009.05.078
[18]  Kuzovkina, Y.A., Knee, M. and Quigley, M.F. (2004) Cadmium and Copper Uptake and Translocation in Five Willow (Salix L.) Species. International Journal of Phytoremediation, 6, 269-287.
https://doi.org/10.1080/16226510490496726
[19]  Angle, J.S. and Linacre, N.A. (2005) Metal Phytoextraction—A Survey of Potential Risks. International Journal of Phytoremediation, 7, 241-254.
https://doi.org/10.1080/16226510500215779
[20]  Salt, D.E., Smith, R.D. and Raskin, I. (1998) Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643-668.
https://doi.org/10.1146/annurev.arplant.49.1.643
[21]  Masarovicova, E. and Kralova, K. (2012) Plant-Heavy Metal Interaction: Phytoremediation, Biofortification and Nanoparticles. In: Montanaro, G. and Dichio, B., Eds., Advances in Selected Plant Physiology Aspects, In Tech, Rijeka, 75-102.
https://doi.org/10.5772/33722
[22]  Messou, A., Coulibaly, L., Doumbia, L. and Gourene, G. (2013) Plants Diversity and Phytoaccumulators Identification on the Akouédo Landfill (Abidjan, Côte d’Ivoire). African Journal of Biotechnology, 12, 253-264.
https://doi.org/10.5897/AJB12.1664
[23]  Kouamé, K.I., Goné, D.L., Savané, I., Kouassi, E.A., Koffi, K., Goula, B.T.A. and Diallo, M. (2006) Mobilité relative des métaux lourds issus de la décharge d’Akouédo et risque de contamination e la nappe du Continental Terminal (Abidjan-Côte d’Ivoire). Scientific African, 2, 39-56.
https://doi.org/10.4314/afsci.v2i1.61133
[24]  AFNOR (1999) Norme NF X 31-120. In: AFNOR, Ed., Recueil de normes, qualité des sols, AFNOR, Paris, 7 p.
[25]  Ghosh, M. and Singh, S.P. (2005b) A Comparative Study of Cadmium Phytoextraction by Accumulator and Weed Species. Environmental Pollution, 133, 365-371.
https://doi.org/10.1016/j.envpol.2004.05.015
[26]  Maldonado-Magaña, A., Favela-Torres, E., Rivera-Cabrera, F. and Volke-Sepulveda, T.L. (2011) Lead Bioaccumulation in Acacia farnesiana and Its Effect on Lipid Peroxidation and Glutathione Production. Plant Soil, 339, 377-389.
https://doi.org/10.1007/s11104-010-0589-6
[27]  Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D. and Raskin, Y. (1997) Enhanced Accumulation of Pb in Indian Mustard by Soil-Applied Chelating Agents. Environmental Science & Technology, 31, 860-865.
https://doi.org/10.1021/es960552a
[28]  Marchiol, L., Assolari, S., Sacco, P. and Zerbi, G. (2004) Phytoextraction of Heavy Metals by Canola (Brassica napus) and Radish (Raphanus sativus) Grown on Multicontaminated Soil. Environmental Pollution, 132, 21-27.
https://doi.org/10.1016/j.envpol.2004.04.001
[29]  Waranusantigul, P., Kruatrachue, M., Pokethitiyook, P. and Auesukaree, C. (2008) Evaluation of Pb Phytoremediation Potential in Buddleja asiatica and B. paniculata. Water, Air, & Soil Pollution, 193, 79-90.
https://doi.org/10.1007/s11270-008-9669-0
[30]  Gall, J.E., Boyd, R.S. and Rajakaruna, N. (2015) Transfer of Heavy Metals through Terrestrial Food Webs: A Review. Environmental Monitoring and Assessment, 193, 187-201.
https://doi.org/10.1007/s10661-015-4436-3
[31]  Ali, H., Khan, E. and Sajad, M.A. (2013) Phytoremediation of Heavy Metals-Concepts and Applications. Chemosphere, 91, 869-881.
https://doi.org/10.1016/j.chemosphere.2013.01.075
[32]  Bielen, A., Remans, T., Vangronsveld, J. and Cuypers, A. (2013) The Influence of Metal Stress on the Availability and Redox State of Ascorbate, and Possible Interference with Its Cellular Functions. International Journal of Molecular Sciences, 14, 6382-6413.
https://doi.org/10.3390/ijms14036382
[33]  Ogoko, E.C. (2015) Accumulation of Heavy Metal in Soil and Their Transfer to Leafy Vegetables with Phytoremediation Potential. American Journal of Chemistry, 5, 125-131.
[34]  Hamzah, A., Hapasri, R.I. and Priyadarshini, R. (2017) The Potential of Wild Vegetation Species of Eleusine indica L. and Sonchus arvenis L. for Phytoremediation of Cd-Contaminated Soil. Journal of Degraded and Mining Lands Management, 4, 797-805.
https://doi.org/10.15243/jdmlm.2017.043.797
[35]  Anarado, C.E., Mmeka, O.P., Anarado, C.J.O. and Umedum, N.L. (2018) Phytoremediation Potentials of Dieffenbachia bownanii and Eleusine indica for Cadmium, Lead, Zinc and Cobalt. IOSR Journal of Applied Chemistry, 11, 68-71.
[36]  Ancheta, M.H., Quimado, M.O., Tiburan, C.L., Doronila, A. and Fernando, E.S. (2020) Copper and Arsenic Accumulation of Pityrogramma calomelanos, Nephrolepis biserrata, and Cynodon dactylon in Cu- and Au-Mine Tailings. Journal of Degraded and Mining Lands Management, 7, 2201-2208.
https://doi.org/10.15243/jdmlm.2020.073.2201
[37]  Opoku, P., Gikunoo, E., Kwesi, A. and Foli, G. (2020) Removal of Selected Heavy Metals and Metalloids from an Artisanal Gold Mining Site in Ghana Using Indigenous Plant Species. Cogent Environmental Science, 6, Article ID: 1840863.
https://doi.org/10.1080/23311843.2020.1840863
[38]  Azeez, J.O., Olowoboko, T.B., Bada, B.S., Odedina, J.N. and Onasanya, O.O. (2020) Evaluation of Soil Metal Sorption Characteristics and Heavy Metal Extractive Ability of Indigenous Plant Species in Abeokuta, Nigeria. International Journal of Phytoremediation, 22, 872-884.
https://doi.org/10.1080/15226514.2020.1717433
[39]  Coulibaly, H., Ouattara, P.J.-M., Messou, A. and Coulibaly, L. (2021) Phytoextraction of Trace Metals (Cd, Ni and Pb) by Panicum maximum Grown on Natural Soil. Open Journal of Applied Sciences, 11, 929-945.
https://doi.org/10.4236/ojapps.2021.118068
[40]  Clemens, S., Palmgren, M.G. and Kramer, U. (2002) A Long Way Ahead: Understanding and Engineering Plant Metal Accumulation. Trends in Plant Science, 7, 309-315.
https://doi.org/10.1016/S1360-1385(02)02295-1
[41]  Yang, X., Feng, Y., He, Z. and Stofella, P.J. (2005) Molecular Mechanisms of Heavy Metal Hyperaccumulation and Phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 339-353.
https://doi.org/10.1016/j.jtemb.2005.02.007
[42]  Kim, R.Y., Yoon, J.K., Kim, T.S., Yang, J.E., Owens, G. and Kim, K.R. (2015) Bioavailability of Heavy Metals in Soils: Definitions and Practical Implementation—A Critical Review. Environmental Geochemistry and Health, 37, 1041-1061.
https://doi.org/10.1007/s10653-015-9695-y
[43]  Jali, P., Pradhan, C. and Das, A.B. (2016) Effects of Cadmium Toxicity in Plants: A Review Article. Scholars Academic Journal of Biosciences, 4, 1074-1081.
[44]  Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M.F., Ok, Y.S. and Murtaza, G. (2017) Effect of Biochar on Alleviation of Cadmium Toxicity in Wheat (Triticum aestivum L.) Grown on Cd-Contaminated Saline Soil. Environmental Science and Pollution Research, 25, 25668-25680.
https://doi.org/10.1007/s11356-017-8987-4
[45]  Grant, C.A., Buckley, W.T., Bailey, L.D. and Selles, F. (1997) Cadmium Accumulation in Crops. Canadian Journal of Plant Science, 78, 1-17.
https://doi.org/10.4141/P96-100
[46]  Das, P., Samantaray, S. and Rout, G.R. (1997) Studies on Cadmium Toxicity in Plants: A Review. Environmental Pollution, 98, 29-36.
https://doi.org/10.1016/S0269-7491(97)00110-3
[47]  Gupta, A. and Balomajumder, C. (2015) Phytoremediation of Heavy Metals and Its Mechanism: A Brief Review. Journal of Integrated Science and Technology, 3, 51-59.
http://pubs.iscience.in/jist
[48]  Muthusaravanan, S., Sivarajasekar, N., Vivek, J.S., Paramasivan, T., Naushad, M., Prakashmaran, J., Gayathri, V. and Al-Duaij, O.K. (2018) Phytoremediation of Heavy Metals: Mechanisms, Methods and Enhancements. Environmental Chemistry Letters, 16, 1339-1359.
https://doi.org/10.1007/s10311-018-0762-3
[49]  Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Angle, J.S. and Baker, A.J.M. (1997) Phytoremediation of Soil Metals. Current Opinion in Biotechnology, 8, 279-284.
https://doi.org/10.1016/S0958-1669(97)80004-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133