全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Combined Landscape Restoration Practices on Soil Organic Carbon Stocks in Semiarid Regions of Burkina Faso

DOI: 10.4236/ojss.2022.1210021, PP. 503-522

Keywords: Soil Organic Carbon, Improved Management, Soil Restoration, Management Practices, Semiarid Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

Forest and landscape restoration (FLR) practices have been reported to improve soil organic carbon stocks (SOCs) and contributing to climate change mitigation. This study aims to evaluate the impact of combined FLR practices, mainly developed in semiarid regions, on SOCs. The SOCs, soil texture, bulk density (ρ), pH, CO2 emissions, and herbaceous biomass were determined at a 0 - 30 cm depth. The experimental design comprised degraded land without FLR practices and three sets of combined FLR practices. These practices included “zaï” + stone bunds + organic manure + assisted natural regeneration (ANR) used to convert degraded land into forest (GF) and cropland (PARL); “zaï” + stone bunds + crop rotation + crop/fallow successions + ANR used to convert degraded land into cropland (OARL) and “zaï”+ stone bunds + organic manure used to convert degraded land into cropland (KARL). SOCs were highest (20.02 t C ha1) under OARL compared with the other combinations of FLR practices. SOCs increased by 99% (+0.2 t C ha1yr1), 58% (+0.3 t C ha1yr1) and 13% (+0.2 t C ha1yr1) under GF, OARL and KARL, respectively, and decreased by 15% (0.1 t C ha1yr1) under PARL. This study provides additional information explaining SOC variation in restored degraded land through the implementation of a combination of FLR practices. This is useful for recommending the combination “zaï” + stone bunds + crop rotation + crop/fallow successions + ANR to improve SOCs in the

References

[1]  Scharlemann, J.P., Tanner, E.V., Hiederer, R. and Kapos, V. (2014) Global Soil Carbon: Understanding and Managing the Largest Terrestrial Carbon Pool. Carbon Management, 5, 81-91.
https://doi.org/10.4155/cmt.13.77
[2]  Zimmermann, M. (2013) The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agriculture, Ecosystems and Environment, 164, 80-99.
https://doi.org/10.1016/j.agee.2012.10.001
[3]  Batjes, N.H. (2014) Total Carbon and Nitrogen in the Soils of the World. European Journal of Soil Science, 65, 10-21.
https://doi.org/10.1111/ejss.12114_2
[4]  Olson, K.R., Al-Kaisi, M., Lal, R. and Cihacek, L. (2016) Soil Organic Carbon Dynamics in Eroding and Depositional Landscapes. Open Journal of Soil Science, 6, 121-134.
https://doi.org/10.4236/ojss.2016.68013
[5]  Batjes, N.H. (2004) Estimation of Soil Carbon Gains Upon Improved Management within Croplands and Grasslands of Africa. Environment, Development and Sustainability, 6, 133-143.
https://doi.org/10.1023/B:ENVI.0000003633.14591.fd
[6]  Vagen, T.G., Lal, R. and Singh, B.R. (2005) Soil Carbon Sequestration in Sub-Saharan Africa: A Review. Land Degradation and Development, 16, 53-71.
https://doi.org/10.1002/ldr.644
[7]  Lal, R. (2018) Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Global Change Biology, 24, 3285-3301.
https://doi.org/10.1111/gcb.14054
[8]  Abegaz, A., Ali, A., Tamene, L., Abera, W. and Smith, J.U. (2021) Modeling Long-Term Attainable Soil Organic Carbon Sequestration across the Highlands of Ethiopia. Environment, Development and Sustainability, 24, 5131-5162.
https://doi.org/10.1007/s10668-021-01653-0
[9]  Smith, P. (2016) Soil Carbon Sequestration and Biochar as Negative Emission Technologies. Global Change Biology, 22, 1315-1324.
https://doi.org/10.1111/gcb.13178
[10]  Besseau, P., Graham, S. and Christophersen, T. (2018) Restoring Forests and Landscapes: The Key to a Sustainable Future. Global Partnership on Forest and Landscape Restoration, Vienna.
[11]  Amin, M.S., Khan, M.Z., Laskar, T. and Rabbi, S.M.F. (2020) Carbon Sequestration in Soil Aggregates under Different Cropping Patterns of Bangladesh. Open Journal of Soil Science, 10, 459-485.
https://doi.org/10.4236/ojss.2020.1010024
[12]  Poeplau, C. and Don, A. (2015) Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agriculture, Ecosystems & Environment, 200, 33-41.
https://doi.org/10.1016/j.agee.2014.10.024
[13]  Powlson, D.S., Stirling, C.M., Thierfelder, C., White, R.P. and Jat, M.L. (2016) Does Conservation Agriculture Deliver Climate Change Mitigation through Soil Carbon Sequestration in Tropical Agro-Ecosystems? Agriculture, Ecosystems & Environment, 220, 164-174.
https://doi.org/10.1016/j.agee.2016.01.005
[14]  Roose, E., Zougmore, R., Stroosnijder, L., Dugué, P. and Bouzou-moussa, I. (2017) Techniques traditionnelles de restauration de la productivité des sols dégradés en régions semi-arides d’Afrique occidentale [Internet]. IRD. Roose E, editor. Restaur. la Product. des sols Trop. méditerranéens. IRD éditions, Marseille.
[15]  Mulla, H. (2021) Soil and Water Conservation Measures Improve Soil Carbon Sequestration and Soil Quality under Cashews. International Journal of Sediment Research, 36, 190-206.
https://doi.org/10.1016/j.ijsrc.2020.07.009
[16]  Diomande, L.B., Soro, S., Soro, G.R. and Yao-Kouame, A. (2021) Effects of Stone Barriers on Soil Physicochemical Characteristics under Cotton (Gossypium hirsutum L.) Cropping Fields Northern of Cote d’Ivoire. Open Journal of Soil Science, 11, 435-447.
https://doi.org/10.4236/ojss.2021.119022
[17]  Zougmoré, R., Mando, A. and Stroosnijder, L. (2004) Effect of Soil and Water Conservation and Nutrient Management on the Soil-Plant Water Balance in Semi-Arid Burkina Faso. Agricultural Water Management, 65, 103-120.
https://doi.org/10.1016/j.agwat.2003.07.001
[18]  Bot, A. and Benites, J. (2005) The Importance of Soil Organic Matter Key to Drought-Resistant Soil and Sustained Food Production. Food and Agriculture Organization of the United Nations, Rome.
[19]  Winowiecki, L. (2017) Soil Carbon 4 per Mille. Geoderma, 292, 59-86.
https://doi.org/10.1016/j.geoderma.2017.01.002
[20]  Chotte, J.-L. (2018) Soil Carbon Stock Changes in Tropical Croplands Are Mainly Driven by Carbon Inputs: A Synthesis. Agriculture, Ecosystems & Environment, 259, 147-158.
https://doi.org/10.1016/j.agee.2017.12.008
[21]  Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P. and Smith, P. (2016) Climate-Smart Soils. Nature, 532, 49-57.
https://doi.org/10.1038/nature17174
[22]  Albrecht, A. (2018) Impact de l’agriculture climato-intelligente sur les stocks de carbone organique du sol à Madagascar. Cahiers Agricultures, 27, 35001.
https://doi.org/10.1051/cagri/2018017
[23]  Poeplau, C., Bolinder, M.A., Eriksson, J., Lundblad, M. and Katterer, T. (2015) Positive Trends in Organic Carbon Storage in Swedish Agricultural Soils Due to Unexpected Socio-Economic Drivers. Biogeosciences, 12, 3241-3251.
https://doi.org/10.5194/bg-12-3241-2015
[24]  Katterer, T. (2020) The Effect of Crop Residues, Cover Crops, Manures and Nitrogen Fertilization on Soil Organic Carbon Changes in Agroecosystems: A Synthesis of Reviews. Mitigation and Adaptation Strategies for Global Change, 25, 929-952.
https://doi.org/10.1007/s11027-020-09916-3
[25]  WRB (2015) World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports, Editor. FAO, Rome.
[26]  Bernoux, M., Feller, C., Cerri, C.C., Eschenbrenner, V. and Cerri, C.E.P. (2005) Soil Carbon Sequestration. In: Roose, E.J., Lal, R., Feller, C., Barthès, B. and Stewart, B.A., Eds., Soil Erosion and Carbon Dynamics, CRC, Taylor and Francis, Boca Raton, 13-22.
https://doi.org/10.1201/9780203491935-3
[27]  Dommergues, Y. (1960) La notion de coefficient de minéralisation du carbone dans les sols. Agronomie Tropicale, 15, 54-60.
[28]  Chaplot, V. (2013) Soil Crusting Impact on Soil Organic Carbon Losses by Water Erosion. Catena, 107, 26-34.
https://doi.org/10.1016/j.catena.2013.03.006
[29]  Lal, R. and Bruce, J.P. (1999) The Potential of World Cropland Soils to Sequester C and Mitigate the Greenhouse Effect. Environmental Science & Policy, 2, 177-185.
https://doi.org/10.1016/S1462-9011(99)00012-X
[30]  Takimoto, A., Nair, P.K.R. and Nair, V.D. (2008) Carbon Stock and Sequestration Potential of Traditional and Improved Agroforestry Systems in the West African Sahel. Agriculture, Ecosystems and Environment, 125, 159-166.
https://doi.org/10.1016/j.agee.2007.12.010
[31]  Singh, B.R. and Lal, R. (2005) The Potential of Soil Carbon Sequestration through Improved Management Practices in Norway. Environment, Development and Sustainability, 7, 161-184.
https://doi.org/10.1007/s10668-003-6372-6
[32]  Boluda, R. (2019) Soil Organic Carbon Stock on the Majorca Island: Temporal Change in Agricultural Soil over the Last 10 Years. Catena, 181, Article ID: 104087.
https://doi.org/10.1016/j.catena.2019.104087
[33]  Raich, J.W. and Tufekciogul, A. (2000) Vegetation and Soil Respiration: Correlations and Controls. Biogeochemistry, 48, 71-90.
https://doi.org/10.1023/A:1006112000616
[34]  Fontaine, S., Bardoux, G., Abbadie, L. and Mariotti, A. (2004) Carbon Input to Soil May Decrease Soil Carbon Content. Ecology Letters, 7, 314-320.
https://doi.org/10.1111/j.1461-0248.2004.00579.x
[35]  Fontaine, S., Mariotti, A. and Abbadie, L. (2003) The Priming Effect of Organic Matter: A Question of Microbial Competition? Soil Biology and Biochemistry, 35, 837-843.
https://doi.org/10.1016/S0038-0717(03)00123-8
[36]  Gross, A. and Glaser, B. (2021) Meta-Analysis on How Manure Application Changes Soil Organic Carbon Storage. Scientific Reports, 11, Article No. 5516.
https://doi.org/10.1038/s41598-021-82739-7
[37]  Maillard, é. and Angers, D.A. (2014) Animal Manure Application and Soil Organic Carbon Stocks: A Meta-Analysis. Global Change Biology, 20, 666-679.
https://doi.org/10.1111/gcb.12438
[38]  Obour, A., Stahlman, P. and Thompson, C. (2017) Long-Term Residual Effects of Feedlot Manure Application on Crop Yield and Soil Surface Chemistry. Journal of Plant Nutrition, 40, 427-438.
https://doi.org/10.1080/01904167.2016.1245323
[39]  Stewart, C.E., Paustian, K., Conant, R.T., Plante, A.F. and Six, J. (2007) Soil Carbon Saturation: Concept, Evidence and Evaluation. Biogeochemistry, 86, 19-31.
https://doi.org/10.1007/s10533-007-9140-0
[40]  Lal, R. (2004) Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304, 1623-1627.
https://doi.org/10.1126/science.1097396
[41]  Sayer, E.J., Powers, J.S. and Tanner, E.V.J. (2007) Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere. PLOS ONE, 2, e1299.
https://doi.org/10.1371/journal.pone.0001299
[42]  West, T.O., Marland, G., King, A.W., Post, W.M., Jain, A.K. and Andrasko, K. (2004) Carbon Management Response Curves: Estimates of Temporal Soil Carbon Dynamics. Environmental Management, 33, 507-518.
https://doi.org/10.1007/s00267-003-9108-3
[43]  Rigon, J.P.G. and Calonego, J.C. (2020) Soil Carbon Fluxes and Balances of Crop Rotations under Long-Term No-Till. Carbon Balance and Management, 15, Article No. 19.
https://doi.org/10.1186/s13021-020-00154-3
[44]  Bationo, A. and Buerkert, A. (2001) Soil Organic Carbon Management for Sustainable Land Use in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems, 61, 131-142.
https://doi.org/10.1023/A:1013355822946
[45]  Botoni, E., Larwanou, M. and Reij, C. (2016) La régénération naturelle assistée (RNA): Une opportunité pour reverdir le Sahel et réduire la vulnérabilité des populations rurales. In: Dia, A. and Duponnois, R., Eds., Le Projet Majeur Africain de La Grande Muraille Verte, IRD éditions, Marseille, 151-162.
https://doi.org/10.4000/books.irdeditions.2122
[46]  Bayala, J., Sanou, J., Bazié, H.R., Coe, R., Kalinganire, A. and Sinclair, F.L. (2020) Regenerated Trees in Farmers’ Fields Increase Soil Carbon across the Sahel. Agroforestry Systems, 94, 401-415.
https://doi.org/10.1007/s10457-019-00403-6
[47]  Zadworny, M. (2015) Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes. New Phytologist, 207, 505-518.
https://doi.org/10.1111/nph.13363
[48]  Tisdall, J.M. and Oades, J.M. (1982) Organic Matter and Water-Stable Aggregates in Soils. Journal of Soil Science, 33, 141-163.
https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
[49]  Lloyd, J. (2012) Variation in Soil Carbon Stocks and Their Determinants across a Precipitation Gradient in West Africa. Global Change Biology, 18, 1670-1683.
https://doi.org/10.1111/j.1365-2486.2012.02657.x
[50]  Baer, S.G., Meyer, C.K., Bach, E.M., Klopf, R.P. and Six, J. (2010) Contrasting Ecosystem Recovery on Two Soil Textures: Implications for Carbon Mitigation and Grassland Conservation. Ecosphere, 1, 1-22.
https://doi.org/10.1890/ES10-00004.1
[51]  O’Brien, S.L., Jastrow, J.D., Grimley, D.A. and Gonzalez-Meler, M.A. (2015) Edaphic Controls on Soil Organic Carbon Stocks in Restored Grasslands. Geoderma, 251-252, 117-123.
https://doi.org/10.1016/j.geoderma.2015.03.023
[52]  Alidoust, E., Afyuni, M., Hajabbasi, M.A. and Mosaddeghi, M.R. (2018) Soil Carbon Sequestration Potential as Affected by Soil Physical and Climatic Factors under Different Land Uses in a Semiarid Region. Catena, 171, 62-71.
https://doi.org/10.1016/j.catena.2018.07.005
[53]  Brahim, N., Blavet, D., Gallali, T. and Bernoux, M. (2011) Application of Structural Equation Modeling for Assessing Relationships between Organic Carbon and Soil Properties in Semiarid Mediterranean Region. International Journal of Environmental Science & Technology, 8, 305-320.
https://doi.org/10.1007/BF03326218
[54]  Feller, C. and Beare, M.H. (1997) Physical Control of Soil Organic Matter Dynamics in the Tropics. Geoderma, 79, 69-116.
https://doi.org/10.1016/S0016-7061(97)00039-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133