The
restoration of soils polluted by trace metals (Pb and Cd) by phytoremediation
is an innovative and ecologically sustainable solution. The objective of the
study was to develop a process of phytoaccumulation of trace metals (Pb and Cd)
in soils with the species Panicummaximum. For this purpose, 30 buckets containing soil were used.
These included six (06) buckets per dose of soil contamination by Pb and Cd (3
mg/kg and 9 mg/kg of Cd and 100 mg/kg and 300 mg/kg of Pb) and six (6) buckets
containing uncontaminated soil (control). During a period of 90 days of
experimentation, the concentrations of trace metals in the plant biomass and in
the soils were measured. Also, the bioaccumulation (BF) and translocation (TF)
factors, the mass of Pb and Cd taken up by the plant were determined. The
results showed that the biomass produced was negatively influenced by
increasing Pb and Cd concentration. The concentrations of Pb and Cd accumulated
by P.maximum varied in the aboveground biomass from 6.48 ± 0.55 to 18.09 ± 0.71 mg/kg
(Pb100); from 10.93 ± 0.38 to 23.04 ± 0.79 mg/kg (Pb300); from 0.91 ± 0.02 to
1.50 ± 0.03 mg/kg (Cd3); and from 3.05 ± 0.08 to 5.43 ± 0.09 mg/kg (Cd9) from
day 30 to day 90. However, in the root biomass, trace metals (Pb and Cd) ranged
from 8.09 ± 0.58 to 22.57 ± 0.86 mg/kg (Pb100); from 29.45 ± 0.49 to 62.35 ±
0.82 mg/kg (Pb300); from 0.66 ± 0.01 to 1.11 ± 0.07 mg/kg (Cd3); and from 2.22
± 0.08 to 3, 97 ± 0.09 mg/kg (Cd9), from day 30 to day 90. Pb was concentrated
in the root biomass and Cd in the aboveground biomass. Bioaccumulation factor
values ranged from 0.26 ± 0.02 to 0.99 ± 0.04 (Pb100); from 0.21 ± 0.04 to 0.50
± 0.06 (Pb300); from 0.83 ± 0.09 to 1.72 ± 0.18 (Cd3); and from 0.70 ± 0.08 to
1.54 ± 0.18 (Cd9). High concentrations of Pb and Cd show a negative effect on
the accumulation potential of P.maximum.
References
[1]
Wang, Q.R., Cui, Y.S., Liu, X.M., Dong, Y.T. and Christie, P. (2003) Soil Contamination and Plant Uptake of Heavy Metals at Polluted Sites in China. Journal of Environmental Science and Health, Part A—Toxic/Hazardous Substances and Environmental Engineering, 38, 823-838. https://doi.org/10.1081/ESE-120018594
[2]
ATSDR (2007) Toxicological Profile for Lead. Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S Department of Health and Human Services, Public Health Services, 582 p.
[3]
ATSDR (2012) Toxicological Profiles for Cadmium. Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S Department of Health and Human Services, Public Health Services, 487 p.
[4]
Knasmuller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C. and Paschke, A. (1998) Detection of Genotoxic Effects of Heavy Metal Contaminated Soils with Plant Bioassays. Mutation Research, 420, 37-48.
https://doi.org/10.1016/S1383-5718(98)00145-4
[5]
Baudouin, C., Charveron, M., Tarrouse, R. and Gall, Y. (2002) Environmental Pollutants and Skin Cancer. Cell Biology and Toxicology, 18, 341-348.
https://doi.org/10.1023/A:1019540316060
[6]
Cunningham, S.D. and Berti, W.R. (2000) Phytoextraction and Phytostabilization: Technical, Economic, and Regulatory Considerations of Soil-Lead Issue. In: Terry, N. and Banuelos, G.S., Eds, Phytoremediation of Contaminated Soil and Water, CRC Press, Boca Raton, 359-376. https://doi.org/10.1201/9780367803148-19
[7]
Salt, D.E., Smith R.D. and Raskin, I. (1998) Phytoremediation. Annual Review of Plant Physiology, 49, 643-668. https://doi.org/10.1146/annurev.arplant.49.1.643
Baker, A.J.M. and Brooks, R.R. (1989) Terrestrial Higher Plants which Hyperaccumulate Metallic Elements—A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery, 1, 81-126.
[10]
Brown, S.L., Chaney, R.L., Angle, J.S. and Baker, A.J.M. (1994) Phytoremediation Potential of Thlaspi caerulescens and Bladder Campion for Zinc- and Cadmium-Contaminated Soil. Journal of Environmental Quality, 23, 1151-1157.
https://doi.org/10.2134/jeq1994.00472425002300060004x
[11]
Maxted, A.P., Black C.R., West, H.M.J., McGrath, S.P. and Young, S.D. (2007) Phytoextraction of Cadmium and Zinc from Arable Soils Amended wich Sewage Sludge Using Thlaspi caerulescens: Development of a Predictive Model. Environment Pollution, 150, 363-372. https://doi.org/10.1016/j.envpol.2007.01.021
[12]
Messou, A. (2015) Caractérisation de la pollution des sols en éléments traces métalliques et évaluation des capacités de phytoaccumulation de certaines espèces endogènes d'Amaranthaceae et de Poaceae de la décharge d’Akouédo (Abidjan, Cote d'Ivoire). Thèse de Doctorat, Université Nangui Abrogoua, Abidjan, 216p.
[13]
Coulibaly, H., Ouattara, P. J.-M., Messou, A. and Coulibaly, L. (2021) Phytoextraction of Trace Metals (Cd, Ni and Pb) by Panicum maximum Grown on Natural Soil. Open Journal of Applied Sciences, 11, 929-945.
https://doi.org/10.4236/ojapps.2021.118068
[14]
Adjiri, O.A., Goné, D.L., Kouamé, K.I., Kamagaté, B. and Biemi, J. (2008) Caractérisation de la pollution chimique et microbiologique de l’environnement de la décharge d’Akouédo, Abidjan-Cote d’Ivoire. International Journal of Biological and Chemical Science, 2, 401-410. https://doi.org/10.4314/ijbcs.v2i4.39768
[15]
Kouamé, K.I., Goné, D.L, Savané, I., Kouassi, E.A., Koffi, K., Goula, B.T.A. and Diallo, M. (2006) Mobilité relative des métaux lourds issus de la décharge d’Akouédo et risque de contamination e la nappe du Continental Terminal (Abidjan-Cote d’Ivoire). Afrique Science, 2, 39-56. https://doi.org/10.4314/afsci.v2i1.61133
[16]
Huynh, T.D. (2009) Impacts des métaux lourds sur l’interaction plante/ver de terre/microflore tellurique. Thèse de Doctorat, Université Paris Est, France, 169 p.
[17]
Atma, W. (2016) Etude du pouvoir auto épurateur de quelques plantes (la phytoremédiation). Thèse de Doctorat, Université de Mascara, Mascara, Algérie, 176 p.
[18]
Baba, A.A. (2012) Etude de contamination et accumulation de quelques métaux lourds dans des céréales, des légumes et des sols agricoles irrigués par des eaux usées de la ville de Hammam Boughrara. Thèse de Doctorat, Université Abou Bekr Belkaid, Tlemcen, Algérie, 256 p.
[19]
Ghosh, M. and Singh, S.P. (2005) A Comparative Study of Cadmium Phytoextraction by Accumulator and Weed Species. Environmental Pollution, 133, 365-371.
https://doi.org/10.1016/j.envpol.2004.05.015
[20]
Marchiol, L., Assolari, S., Sacco, P. and Zerbi, G. (2004) Phytoextraction of Heavy Metals by Canola (Brassica napus) and Radish (Raphanus sativus) Grown on Multicontaminated Soil. Environmental Pollution, 132, 21-27.
https://doi.org/10.1016/j.envpol.2004.04.001
[21]
Ouattara, P.J.M. (2011) Epuration des eaux résiduaires urbaines par un marais artificiel planté avec Panicum maximum (Jacquin, 1781): Performances épuratoires et structure de la faune du substrat. Thèse de Doctorat, Université d’Abobo-Adjarné, Abidjan, Cote d’Ivoire, 165 p.
[22]
Kabata-Pendias, A. and Pendias, H. (1992) Trace Elements in Soils and Plants. 2nd Edition, CRC Press, Boca Raton, 365 p.
[23]
Coulibaly, H., Messou, A., Ouattara, P.J.-M. and Coulibaly, L. (2020) Phytoextraction Capacity of Panicum maximum Grown on Synthetic Heavy Metals Contaminated Soil. Trends in Applied Sciences Research, 15, 281-292.
https://doi.org/10.3923/tasr.2020.281.292
[24]
Chiu, K.K., Ye, Z.H. and Wong, M.H. (2005) Enhanced Uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays Using Chelating Agents. Chemosphere, 60, 1365-1375. https://doi.org/10.1016/j.chemosphere.2005.02.035