全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蒲江县寿安街道龙泉村滑坡特征研究
Research on the Feature of Landslide in Longquan Village, Shou’an Town, Pujiang County, Chengdu city

DOI: 10.12677/AG.2022.129123, PP. 1275-1285

Keywords: 龙泉村滑坡,破坏特征,形成原因,处置措施
Longquan Landslide
, Destroyed Feature, Deformation Cause, Manage Measure

Full-Text   Cite this paper   Add to My Lib

Abstract:

2020年8月18日,四川省成都市蒲江县寿安街道龙泉村发生多处山体滑坡。点多面广的滑坡摧毁2座高压铁塔,毁坏高压线路,导致乡村公路隆起、开裂,损毁沟渠、斜坡,造成一定的经济财产损失。综合运用无人机航测、现场地质调查等技术手段,初步揭示滑坡的破坏特征、基本特征和形成原因,分析了滑坡的形成条件和诱发因素。目的是揭示红层地区浅表层滑坡的发生规律。成果有助于高压铁塔及线路故障应急处置,指导高压线路勘察及设计,并对丘陵和山区工程建设避让地质灾害危险区和影响区提供参考。
Extensive landslide happened in Longquan village, Shou’an town, Pujiang county, Chengdu city, Sichuan province on August 18, 2020. The rock mass destroyed 2 high-voltage towers and 1 high tension line, caused arching and cracking of county road, damaged ditches and slopes, resulting in certain economic property loss. Through UAV aerial photography and geological survey, this paper discovers destroyed feature and deformation cause of the landslide, analyses its deformation condition and inducing factor. The purpose is to announce the occurrence regularity of the surface and shallow landslide in red layer area. The achievement helps emergency disposal of high-voltage tower and line fault. It can be used to guide prospecting and design of high-voltage line. Reference measures can be taken for projects in mountainous areas to avoid dangerous areas and affected areas of geological hazard.

References

[1]  翟成林, 司鹄, 胡凌, 等. 基于滑坡灾害输电网的预警模型[J]. 安全与环境学报, 2018, 18(1): 223-229.
[2]  Chen, Y., Zhao, L., Wang, Y., et al. (2019) Precipitation Data and Their Uncertainty as Input for Rainfall Induced Shallow Landslide Models. Frontiers of Earth Science, 13, Article No. 10.
https://doi.org/10.1007/s11707-019-0791-7
[3]  邓创, 刘友波, 刘俊勇, 等. 考虑降雨诱发次生地质灾害的电网风险评估方法[J]. 电网技术, 2016, 40(12): 3825-3832.
[4]  Fu, X., Sheng, Q., Du, W., et al. (2020) Evaluation of Dynamic Stability and Analysis of Reinforcement Measures of a Landslide under Seismic Action: A Case Study on the Yanyangcun Landslide. Bulletin of Engineering Geology and the Environment, 79, 2847-2862.
https://doi.org/10.1007/s10064-020-01745-7
[5]  陈斌. 关于高压铁塔周边滑坡的稳定性分析及防治研究[J]. 科技传播, 2010(24): 162-163.
[6]  Wadadar, S. and Mukhopadhyay, B.P. (2022) GIS-Based Landslide Susceptibility Zonation and Comparative Analysis Using Analytical Hierarchy Process and Conventional Weighting-Based Multivariate Statistical Methods in the Lachung River Basin, North Sikkim. Natural Hazards, 113, 1199-1236.
https://doi.org/10.1007/s11069-022-05344-5
[7]  Weng, M.C., Chen, T.C. and Tsai, S.J. (2017) Modeling Scale Effects on Consequent Slope Deformation by Centrifuge Model Tests and the Discrete Element Method. Landslides, 14, 981-993.
https://doi.org/10.1007/s10346-016-0774-7
[8]  黄晨忱, 殷坤龙, 梁鑫, 等. 极端工况下滑坡区超高压输电线路杆塔基础失稳评估分析[J]. 安全与环境学报, 2021, 28(4): 139-147.
[9]  Solak, K.C., Tuncay, E. and Ulusay, R. (2017) An Investigation on the Mechanisms of Instabilities and Safe Design of the South Slope at a Lignite Pit (SW Turkey) Based on a Sensitivity Approach. Bulletin of Engineering Geology and the Environment, 76, 1321-1341.
https://doi.org/10.1007/s10064-017-1025-4
[10]  Ling, Q., Qu, W., Zhang, Q., et al. (2020) Improved Kalman Filter Method Considering Multiple Factors and Its Application in Landslide Prediction. Frontiers of Earth Science, 14, Article No. 12.
https://doi.org/10.1007/s11707-019-0796-2
[11]  Strouth, A. and Mcdougall, S. (2022) Individual Risk Evaluation for Landslides: Key Details. Landslides, 19, 977-991.
https://doi.org/10.1007/s10346-021-01838-8
[12]  Li, Q., Huang, D., Pei, S., Qiao, J., et al. (2021) Using Physical Model Experiments for Hazards Assessment of Rainfall-Induced Debris Landslides. Journal of Earth Science, 32, 1113-1128.
https://doi.org/10.1007/s12583-020-1398-3
[13]  Yu, G.A., Lu, J., Lyu, L., et al. (2020) Mass Flows and River Response in Rapid Uplifting Regions—A Case of Lower Yarlung Tsangpo Basin, Southeast Tibet, China. International Journal of Sediment Research, 35, 609-620.
https://doi.org/10.1016/j.ijsrc.2020.05.006
[14]  Xu, Q., Li, W.L., Ju, Y.Z., Dong, X.J., et al. (2020) Multitemporal UAV-Based Photogrammetry for Landslide Detection and Monitoring in a Large Area: A Case Study in the Heifangtai Terrace in the Loess Plateau of China. Journal of Mountain Science, 17, 1826-1839.
https://doi.org/10.1007/s11629-020-6064-9
[15]  林阿娜, 王浩, 颜斌, 等. 邻近输电塔路堑边坡失稳风险定量评估及加固工程设计优化[J]. 中国地质灾害与防治学报, 2019, 30(2): 19-29.
[16]  陈峰, 李敏生. 谈输电铁塔边坡滑坡机理及基础加固方法[J]. 山西建筑, 2017, 43(31): 51-53.
[17]  Wang, H., Zhou, Y., Wang, S., et al. (2020) Coupled Model Constructed to Simulate the Landslide Dam Flood Discharge: A Case Study of Baige Landslide Dam, Jinsha River. Frontiers of Earth Science, 14, 63-76.
https://doi.org/10.1007/s11707-019-0805-5
[18]  Cheng, Z., Gong, W., Tang, H., et al. (2021) UAV Photogramme-try-Based Remote Sensing and Preliminary Assessment of the Behavior of a Landslide in Guizhou, China. Engineering Geology, 289, Article ID: 106172.
https://doi.org/10.1016/j.enggeo.2021.106172
[19]  Garnica-Pea, R.J. and Alcántara-Ayala, I. (2021) The Use of UAVs for Landslide Disaster Risk Research and Disaster Risk Management: A Literature Review. Journal of Mountain Science, 18, 482-498.
https://doi.org/10.1007/s11629-020-6467-7
[20]  Xiao, L., Wang, J., Zhu, Y. and Zhang, J. (2020) Quantitative Risk Analysis of a Rainfall-Induced Complex Landslide in Wanzhou County, Three Gorges Reservoir, China. International Journal of Disaster Risk Science, 11, 347-363.
https://doi.org/10.1007/s13753-020-00257-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133