|
Modern Linguistics 2022
机器翻译的译文质量、高频错误类型及解决对策研究:基于机器翻译的发展史
|
Abstract:
智能信息时代下机器翻译在语言服务行业已经成为提升译者效率与译文质量不可或缺的工具。本文在概括机器翻译的发展历史、主要发展阶段中机器翻译出现的翻译质量问题及相关的技术瓶颈的基础上,重点关注机器翻译高频出现的错误类型,继而归纳相应的解决方案,以期为科技文本机器翻译译后编辑的高频错误或偏误类型提供一个相对较为全面的分析与系统研究。
Machine translation has become an indispensable tool for improving translators’ efficiency and translation quality in the language service industry in the era of intelligent information. Based on the development history of machine translation, translation quality problems and related technical bottlenecks in machine translation in the main development stages, this paper focuses on the types of errors that occur frequently in machine translation, and then summarizes the corresponding solutions, with a view to providing a relatively comprehensive analysis and systematic study of the types of high-frequency errors or biases in the post-translation editing of scientific and technical texts by machine translation.
[1] | Hutchins, W. and Somers, H. (1992) An Introduction to Machine Translation. Academic Press, London. |
[2] | 胡开宝, 李翼. 机器翻译特征及其与人工翻译关系的研究[J]. 中国翻译, 2016, 37(5): 10-14. |
[3] | Poibeau, T. (2017) Machine Translation. The MIT Press, Boston. |
[4] | Shannon, C.E. (1956) A Universal Turing Machine with Two Internal States. In Shannon, C.E. and McCarthy, J., Eds., Automata Studies, Princeton University Press, New Jersey, 157-165. |
[5] | 高璐璐, 赵雯. 机器翻译研究综述[J]. 中国外语, 2020, 17(6): 97-103. |
[6] | (2014) ISO TC 37. ISO 18587 Translation Services—Post-Editing of Machine Translation Output—Requirements. |
[7] | 刘晓燕. 科技翻译中的“口吻”传递[J]. 中国科技翻译, 2014, 27(1): 12-15. |
[8] | 崔启亮, 李闻. 译后编辑错误类型研究——基于科技文本英汉机器翻译[J]. 中国科技翻译, 2015, 28(4): 19-22. |
[9] | 蔡强, 董冬冬. 基于GOOGLE神经网络汉英翻译的译后编辑研究——以科技文本为例[J]. 西南石油大学学报(社会科学版), 2020, 22(1): 107-112. |
[10] | 杨玉婉. 神经机器翻译的译后编辑——以《潜艇水动力学》英汉互译为例[J]. 中国科技翻译, 2020, 33(4): 21-23+42. |
[11] | 李梅, 朱锡明. 英汉机译错误分类及数据统计分析[J]. 上海理工大学学报(社会科学版), 2013, 35(3): 201-207. |
[12] | 邹申. 英语专业写作教学语料库建设与研究[M]. 上海: 复旦大学出版社, 2011. |