全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

共享柔性资源约束下的多机并行作业排程调度问题研究
Unrelated Parallel Machines Scheduling with Shared Flexible Resources

DOI: 10.12677/MSE.2022.113042, PP. 341-355

Keywords: 共享柔性资源,不相关并行机调度,禁忌搜索,超启发式算法
Shared Flexible Resources
, Unrelated Parallel Machine Scheduling, Tabu Search, Hyper-Heuristic Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着C2B定制化生产模式的兴起,催生了多品种小批量的生产方式。这种方式会导致各类生产任务在机器上频繁切换,容易造成产能浪费和机器损耗。同时,在多机并行生产的过程中,经常需要共享一些柔性资源,如人力、库存缓冲区、特定生产设备等,因此需要精巧的生产排程计划来合理协调多种共享资源的利用,减少产能浪费。本文以并行机器调度问题为研究对象,研究了以最小化最大完工时间以及切换时间为目标的多机并行调度问题。在满足经典并行机调度问题的约束条件下,同时考虑了多种共享柔性资源约束。针对该NP-hard问题,本文设计了基于禁忌搜索的超启发式算法进行求解优化,采用禁忌搜索算法作为高层次启发式策略,并结合并行机作业的调度特点设计了7种LLH来构成低层次启发式算法池,通过算例分析验证了算法的有效性。最后通过不同规模的数值分析对多种共享柔性资源的影响进行分析,结果表明人力资源和共享产线容量的增加都会改善排程的目标,然而这两种资源的边际效应是随之递减的。由于资源的使用以及扩容都需要一定成本,因此科学选择合适的人力资源水平以及共享产线的容量对提高整体效率非常重要。
With the rise of C2B customized production mode, multi-variety and small-batch production mode has been spawned. This way will lead to frequent switching of various production tasks on the machine, which is easy to cause capacity waste and machine loss. At the same time, in the process of multi-machine parallel production, it is often necessary to share some flexible resources, such as manpower, inventory buffer, specific production equipment, etc. Therefore, exquisite production scheduling is needed to rationally coordinate the utilization of various shared resources and reduce capacity waste. In this paper, the unrelated parallel machine scheduling problem is studied to minimize the maximum completion time and switch time. Under the constraints of the classical parallel machine scheduling problem, multiple shared flexible resource constraints are considered at the same time. To solve the NP-hard problem, this paper designs a hyper-heuristic algorithm based on tabu search for optimization. Tabu search algorithm is used as a high-level heuristic strategy. Combined with the scheduling characteristics of parallel machine jobs, seven low-level heuristics are designed to form a low-level heuristic algorithm pool. The effectiveness of the algorithm is verified by an example. Finally, the impact of multiple kinds of shared flexible resources is analyzed by numerical analysis of different scales. The results show that the increase of worker resources and shared production line capacity will improve the scheduling goals, but the marginal effect of these two kinds of resources decreases accordingly. Due to the cost of resource utilization and expansion, it is important to scientifically choose the right level of worker resources and share the capacity of production line to improve the overall efficiency.

References

[1]  鲁陈璐. 制造系统柔性资源调度问题及其优化算法研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2016.
[2]  王一帆, 刘士新, 陈迪. 求解多技能人力资源约束的项目调度问题的两阶段算法[J]. 东北大学学报(自然科学版), 2014, 35(2): 184-189.
[3]  王凌. 车间调度及其遗传算法[M]. 北京: 清华大学出版社, 2003: 146-148.
[4]  Bitar, A., Dauzère-Pérès, S. and Yugma, G.C. (2021) Unrelated Parallel Machine Scheduling with New Criteria: Complexity and Models. Computers & Operations Research, 132, Article No. 105291.
https://doi.org/10.1016/j.cor.2021.105291
[5]  Bektur, G. and Sara?, T. (2019) A Mathematical Model and Heuristic Algorithms for an Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent Setup Times, Machine Eligibility Restrictions and a Common Server. Computers & Operations Research, 103, 46-63.
https://doi.org/10.1016/j.cor.2018.10.010
[6]  雷德明, 杨海. 求解多目标不相关并行机调度问题的多群体人工蜂群算法[J]. 控制与决策, 2022, 37(5): 1174-1182.
[7]  齐玉欣, 付亚平, 孙翠华. 考虑能耗优化和学习效应的随机多目标并行机调度问题研究[J]. 青岛大学学报(自然科学版), 2021, 34(1): 82-86.
[8]  王东军, 刘翱, 刘克, 刘波. 基于优先规则的复杂并行机调度问题研究[J]. 系统工程理论与实践, 2016, 36(3): 779-786.
[9]  Vallada, E., Villa, F. and Fanjul-Peyro, L. (2019) Enriched Metaheuristics for the Resource Constrained Unrelated Parallel Machine Scheduling Problem. Computers & Operations Research, 111, 415-424.
https://doi.org/10.1016/j.cor.2019.07.016
[10]  轩华, 张寒, 王薛苑. 带恶化和学习效应的不相关并行机调度优化[J/OL]. 控制工程. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename= JZDF20210802000&uniplatform=NZKPT&v= ydIOHjjzTr7Th2NRRAHJr5hMJcbdIGXWquvUhACCN-tswc234O6_n13pjXrpMi4z, 2020-1-10.
[11]  Fanjul-Peyro, L. (2020) Models and an Exact Method for the Unrelated Parallel Machine Scheduling Problem with Setups and Resources. Expert Systems with Applications X, 5, Article ID: 100022.
https://doi.org/10.1016/j.eswax.2020.100022
[12]  Lei, D., Yuan, Y. and Cai, J. (2020) An Improved Artificial Bee Colony for Multi-Objective Distributed Unrelated Parallel Machine Scheduling. International Journal of Production Research, 2020, 1-13.
https://doi.org/10.1080/00207543.2020.1775911

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133