|
基于TWDTW的黄河三角洲湿地植被分类研究
|
Abstract:
湿地植被是湿地生态系统中必不可少的一部分,在调节气候、蓄洪防旱等方面发挥了重要作用,对其进行行之有效的监测对于生态保护至关重要。基于时序的遥感影像进行地物分类在植被分类领域具有重要优势,湿地植被生长环境复杂,不同植被之间物候特征并不明确,且滨海湿地地区云雾较多,这些因素限制了时序遥感在湿地植被监测中的应用。基于时间加权的动态时间归整(Time-Weighted Dynamic Time Warping, TWDTW)通过增加时间权重限制实现时序匹配,能够避免植被物候因素的干扰与畸形匹配现象。本文探讨了该算法在黄河三角洲湿地植被分类中的适用性,并将分类结果与传统分类方法进行对比。研究表明,该算法在该区域总体分类精度为97.56%,Kappa系数为0.95。应用TWDTW算法可以有效进行湿地植被分类,能直观地反映湿地植被的空间分布格局,满足湿地生态环境监测、资源调查与管理等方面的需要。
Wetland vegetation is an indispensable part of wetland ecosystems, which plays an important role in climate regulation, flood storage, drought prevention, etc. Effective monitoring of wetland vegetation is essential for ecological conservation. However, the application of time-series remote sensing in wetland vegetation monitoring is limited by the complex growth environment of wetland vegetation, the unclear physical characteristics of different vegetation, and the high cloudiness of coastal wetland areas. By increasing the time weight limit to achieve temporal matching, the interference and aberrant matching of vegetation phenology can be avoided by TWDTW (Time- Weighted Dynamic Time Warping). This paper explores the applicability of this algorithm to the classification of wetland vegetation in the Yellow River Delta and compares the classification results with traditional classification methods. The study shows that the overall classification accuracy of the algorithm is 97.56% and the Kappa coefficient is 0.95. The application of the TWDTW algorithm can effectively classify wetland vegetation and reflect the spatial distribution pattern of wetland vegetation. In addition, the result can meet the needs of wetland ecological environment monitoring, resource survey, and management etc.
[1] | 张晨宇, 陈沈良, 李鹏, 等. 现行黄河口保护区典型湿地植被时空动态遥感监测[J]. 海洋学报, 2022, 44(1): 125-136. |
[2] | 张树文, 颜凤芹, 于灵雪, 等. 湿地遥感研究进展[J]. 地理科学, 2013, 33(11): 1406-1412.
https://doi.org/10.13249/j.cnki.sgs.2013.11.012 |
[3] | 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1885-1898. https://doi.org/10.13203/j.whugis20180251 |
[4] | 殷守敬, 吴传庆, 王桥, 等. 多时相遥感影像变化检测方法研究进展综述[J]. 光谱学与光谱分析, 2013, 33(12): 3339-3342. |
[5] | 韩晓勇, 韩玲, 陈鲁皖. 基于DTW距离的时序NDVI数据植被信息提取——以秦巴山区为例[J]. 测绘工程, 2016, 25(3): 11-16. https://doi.org/10.19349/j.cnki.issn1006-7949.2016.03.003 |
[6] | 于贵朋. 基于时间序列遥感影像及DTW算法的塞罕坝林场树种识别研究[J]. 林业与生态科学, 2019, 34(3): 261-265. https://doi.org/10.13320/j.cnki.hjfor.2019.0041 |
[7] | Guan, X., Huang, C. and Liu, G. (2016) Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time- Series Similarity Measurement Based on DTW Distance. Remote Sensing, 8, 3390-3415.
https://doi.org/10.3390/rs8010019 |
[8] | 管续栋, 黄翀, 刘高焕, 等. 基于DTW距离的时序相似性方法提取水稻遥感信息——以泰国为例[J]. 资源科学, 2014, 36(2): 267-272. |
[9] | Maus, V., Cmara, G., Cartaxo, R., et al. (2016) A Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9, 3729- 3739. https://doi.org/10.1109/JSTARS.2016.2517118 |
[10] | 邱鹏勋, 汪小钦, 茶明星, 等. 基于TWDTW的时间序列GF-1 WFV农作物分类[J]. 中国农业科学, 2019, 52(17): 2951-2961. |
[11] | 郭栋. 基于多源数据的复杂种植结构区作物遥感分类[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2017. |
[12] | 李晓慧, 王宏, 李晓兵, 等. 基于多时相Landsat8 OLI影像的农作物遥感分类研究[J]. 遥感技术与应用, 2019, 34(2): 389-397. |
[13] | 杨超, 邬国锋, 李清泉, 等. 植被遥感分类方法研究进展[J]. 地理与地理信息科学, 2018, 34(4): 24-32 |
[14] | 刘润红, 梁士楚, 赵红艳, 等. 中国滨海湿地遥感研究进展[J]. 遥感技术与应用, 2017, 32(6): 998-1011. |
[15] | 陈旭, 郝震寰. 哨兵卫星Sentinel-2A数据特性及应用潜力分析[J]. 科技视界, 2018(16): 48-50.
https://doi.org/10.19694/j.cnki.issn2095-2457.2018.16.021 |
[16] | Ding, Q., Chen, W., King, B.A., et al. (2011) Coastal Wetland Investigations by Airborne LiDAR: A Case Study in the Yellow River Delta, China. Marine Technology Society Journal, 45, 59-70. https://doi.org/10.4031/MTSJ.45.5.6 |
[17] | 于冬雪, 韩广轩, 王晓杰, 等. 互花米草入侵对黄河口潮沟形态特征和植物群落分布的影响[J]. 生态学杂志, 2022, 41(1): 42-49. https://doi.org/10.13292/j.1000-4890.202201.003 |
[18] | Mb, A. and Ocb, C. (2018) Sentinel-2 Cropland Mapping Using Pixel-Based and Object-Based Time-Weighted Dynamic Time Warping Analysis. Remote Sensing of Environment, 204, 509-523.
https://doi.org/10.1016/j.rse.2017.10.005 |
[19] | 阴海明, 王立辉, 董明霞, 等. 基于多时相Sentinel-2遥感影像的江汉平原夏收作物提取方法[J]. 福建农林大学学报(自然科学版), 2021, 50(1): 16-22. https://doi.org/10.13323/j.cnki.j.fafu(nat.sci.).2021.01.003 |
[20] | 郭文婷, 张晓丽. 基于Sentinel-2时序多特征的植被分类[J]. 浙江农林大学学报, 2019, 36(5): 849-856. |