全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微量Zr对6082铝合金晶粒亚结构演变的影响
Effect of Trace Zr on Grain Substructure Evolution of 6082 Aluminum Alloy

DOI: 10.12677/MS.2022.127084, PP. 761-770

Keywords: Al-Mg-Si铝合金,Zr添加,晶粒亚结构,微观组织
Al-Mg-Si Alloys
, Zr Additions, Grain Substructures, Microstructures

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过研究不同应变速率(10?3~1 s?1)下6082、Zr-6082铝合金的热变形行为以及微观结构演变,采用准原位EBSD对热处理前后晶粒组织的演变过程进行了分析,进一步探讨了Zr的加入对晶粒亚结构的调控作用,两种合金的流变应力曲线表明在低应变速率(10?3~10?1 s?1)下,动态软化作用大于加工硬化,主导了变形过程;在高应变速率下,动态软化和加工硬化达到平衡。随着应变速率增大,峰值应力水平增大,且Zr-6082合金的流变应力和峰值应力水平相比6082合金更大,其中应变速率为0.01时峰值应力相比6082合金增大21.1%。微量Zr合金化后亚晶体积分数、位错密度增加,再结晶水平降低,且应变速率越高的试样再结晶水平越低,Zr的加入促进了6082合金在热变形过程中动态回复的延迟和动态再结晶的抑制。在后续的热处理过程中,Zr同样起到了抑制再结晶的作用,变形态产生较多亚结构的样品热处理后保留较多的亚结构。在较高的应变速率下变形的样品,力学性能较好,Zr的加入促进了亚结构的形成,含Zr的6082合金热变形态和时效态的硬度值均高于6082合金。
By studying the thermal deformation behavior and microstructure evolution of 6082 and Zr-6082 aluminum alloys under different strain rates (10?3~1 s?1), the evolution process of grain structure before and after heat treatment was analyzed by quasi in-situ EBSD, and the effect of Zr addition on grain substructure was further discussed. The flow stress curves of the two alloys showed that the dynamic softening effect was greater than work hardening at low strain rates (10?3~10?1 s?1), dominated the deformation process; At high strain rate, dynamic softening and work hardening reach equilibrium. With the increase of strain rate, the peak stress level increases, and the flow stress and peak stress level of Zr-6082 alloy are greater than that of 6082 alloy. When the strain rate is 0.01, the peak stress increases by 21.1% compared with that of 6082 alloy. After microalloying with Zr, the volume fraction of subgrain and dislocation density increased, the recrystallization level decreased, and the higher the strain rate, the lower the recrystallization level. The addition of Zr promoted the delay of dynamic recovery and the inhibition of dynamic recrystallization of 6082 alloy during hot deformation. In the subsequent heat treatment process, Zr also played a role in inhibiting recrystallization. The samples with more substructures produced by morphology change retained more substructures after heat treatment. The samples deformed at higher strain rate have better mechanical properties. The addition of Zr promotes the formation of substructure. The hardness values of 6082 alloy containing Zr are higher than those of 6082 alloy in both thermal deformation morphology and aging state.

References

[1]  Liang, W.J., Rometsch, P.A., Cao, L.F. and Birbilis, N. (2013) General Aspects Related to the Corrosion of 6xxx Series Aluminium Alloys: Exploring the Influence of Mg/Si Ratio and Cu. Corrosion Science, 76, 119-128.
https://doi.org/10.1016/j.corsci.2013.06.035
[2]  Vargel, C. (2020) Chapter G.5-6XXX Series Alloys. In: Corrosion of Aluminium, 2nd Edition, Elsevier, Amsterdam, 485-495.
https://doi.org/10.1016/B978-0-08-099925-8.00034-X
[3]  Hua, L., Yuan, P.-G., Zhao, N., Hu, Z.-L. and Ma, H.-J. (2022) Microstructure and Mechanical Properties of 6082 Aluminum Alloy Processed by Preaging and Hot Forging. Transactions of Nonferrous Metals Society of China, 32, 790-800.
https://doi.org/10.1016/S1003-6326(22)65833-3
[4]  Mukhopadhyay, P. (2012) Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys. Isrn Metallurgy, 2012, Article ID: 165082.
https://doi.org/10.5402/2012/165082
[5]  Zhong, H., Rometsch, P.A., Cao, L. and Estrin, Y. (2016) The Influence of Mg/Si Ratio and Cu Content on the Stretch Formability of 6xxx Aluminium alloys. Materials Science and Engineering: A, 651, 688-697.
https://doi.org/10.1016/j.msea.2015.11.016
[6]  Vargel, C. (2004) Corrosion of Aluminium. Elsevier Science, Amsterdam.
https://doi.org/10.1016/B978-0-08-044495-6.X5000-9
[7]  Meng, Y., Zhao, Z. and Cui, J. (2013) Effect of Minor Zr and Sc on Microstructures and Mechanical Properties of Al-Mg-Si-Cu-Cr-V Alloys. Transactions of Nonferrous Metals Society of China, 23, 1882-1889.
https://doi.org/10.1016/S1003-6326(13)62673-4
[8]  Cabibbo, M. and Evangelista, E. (2006) A Tem Study of the Combined Effect of Severe Plastic Deformation and (Zr), (Sc+Zr)-Containing Dispersoids on an Al-Mg-Si Alloy. Journal of Materials Science, 41, 5329-5338.
https://doi.org/10.1007/s10853-006-0306-2
[9]  Babaniaris, S., Ramajayam, M., Jiang, L. Varma, R., Langan, T. and Dorin, T. (2020) Effect of Al3(Sc,Zr) Dispersoids on the Hot Deformation Behaviour of 6xxx-Series Alloys: A Physically Based Constitutive Model. Materials Science and Engineering: A, 793, Article ID: 139873.
https://doi.org/10.1016/j.msea.2020.139873
[10]  Esmaeili Ghayoumabadi, M., Mochugovskiy, A.G., Tabachkova, N.Yu. and Mikhaylovskaya, A.V. (2022) The Influence of Minor Additions of Y, Sc, and Zr on the Microstructural Evolution, Superplastic Behavior, and Mechanical Properties of AA6013 Alloy. Journal of Alloys and Compounds, 900, Article ID: 163477.
https://doi.org/10.1016/j.jallcom.2021.163477
[11]  Yuan, W. and Liang, Z. (2011) Effect of Zr Addition on Properties of Al-Mg-Si Aluminum Alloy Used for All Aluminum Alloy Conductor. Materials & Design, 32, 4195-4200.
https://doi.org/10.1016/j.matdes.2011.04.034
[12]  Dorin, T., Ramajayam, M., Babaniaris, S., Jiang, L. and Langan, T.J. (2019) Precipitation Sequence in Al-Mg-Si-Sc-Zr Alloys during Isochronal Aging. Materialia, 8, Article ID: 100437.
https://doi.org/10.1016/j.mtla.2019.100437
[13]  Chamanfar, A., Alamoudi, M.T., Nanninga, N.E. and Misiolek, W.Z. (2019) Analysis of Flow Stress and Microstructure during Hot Compression of 6099 Aluminum Alloy (AA6099). Materials Science and Engineering: A, 743, 684-696.
https://doi.org/10.1016/j.msea.2018.11.076
[14]  Zhang, C., Wang, C., Guo, R., Zhao, G., Chen, L., Sun, W. and Wang, X. (2019) Investigation of Dynamic Recrystallization and Modeling of Microstructure Evolution of an Al-Mg-Si Aluminum Alloy during High-Temperature Deformation. Journal of Alloys and Compounds, 773, 59-70.
https://doi.org/10.1016/j.jallcom.2018.09.263
[15]  Zhang, H., Li, L., Yuan, D. and Peng, D. (2007) Hot Deformation Behavior of the New Al-Mg-Si-Cu Aluminum Alloy during Compression at Elevated Temperatures. Materials Characterization, 58, 168-173.
https://doi.org/10.1016/j.matchar.2006.04.012
[16]  Liu, S., Pan, Q., Li, M., Wang, X., He, X., Li, X., et al. (2019) Microstructure Evolution and Physical-Based Diffusion Constitutive Analysis of Al-Mg-Si Alloy during Hot Deformation. Materials & Design, 184, Article ID: 108181.
https://doi.org/10.1016/j.matdes.2019.108181
[17]  Zhao, J., Deng, Y., Tang, J. and Zhang, J. (2019) Influence of Strain Rate on Hot Deformation Behavior and Recrystallization Behavior under Isothermal Compression of Al-Zn-Mg-Cu Alloy. Journal of Alloys and Compounds, 809, Article ID: 151788.
https://doi.org/10.1016/j.jallcom.2019.151788

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133