全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物乳杆菌R-15对高脂饮食下小鼠体质量及血脂的影响研究
The Effect of Lactobacillus plantarum R-15 on Body Weight and Blood Lipids of Mice with High-Fat Diet

DOI: 10.12677/HJFNS.2022.113024, PP. 201-210

Keywords: 植物乳杆菌,血脂,体质量,胆固醇,高脂饮食
Lactobacillus plantarum
, Blood Lipids, Body Mass, Cholesterol, High-Fat Diet

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究植物乳杆菌R-15对高脂饮食小鼠体质量及血脂的影响,将40只成年洁净级雄性昆明小鼠随机分为普通组、高脂组、R-15-7d组和R-15-35d组等四组,其中普通组施喂基础饲料,高脂组施喂高脂饲料,R-15-7d组和R-15-35d组(施喂高脂饲料和R-15菌悬液),检测小鼠体质量、脏器指数、血脂和血糖。结果显示:R-15-35d组在采食量相近的情况下,小鼠体质量增长最为缓慢(P < 0.05)。R-15对肝脏和肾脏指数影响较小(P > 0.05),但可改善高脂饮食造成的脾脏指数增加(P < 0.05);能显著抑制高脂饮食下小鼠血清总胆固醇和低密度脂蛋白胆固醇的升高(P < 0.05),并降低小鼠动脉粥样硬化指数(P < 0.05);对小鼠血糖有一定抑制作用,但差异不明显(P > 0.05)。
In order to study the effect of Lactobacillus plantarum R-15 on body weight and serum lipids of mice fed with high-fat, forty clean grade adult male Kunming mice were equivalently divided into four groups randomly, named normal group, high-fat group, R-15-7d group, and R-15-35d group individually. Among of them, mice of normal group were fed with basic feed, high-fat group were fed with high-fat feed, R-15-7d group and R-15-35d group were fed with high-fat feed and suspension of strain R-15. Finally, the body mass, organ index, blood lipids and glucose levels of mice in each group were measured. The results indicate that the body mass of mice in R-15-35d group increased most slowly under the con-dition of similar feed intake with other groups (P < 0.05). The strain R-15 had little effect on liver and kidney index (P > 0.05), but it could improve the increase of spleen index caused by high-fat diet (P < 0.05), and significantly inhibit the increase of serum total cholesterol and low density lip-oprotein cholesterol in mice under high-fat diet (P < 0.05), and reduce the atherosclerosis index of mice (P < 0.05), had a certain inhibitory effect on blood glucose in mice, but the difference is not ob-vious (P > 0.05).

References

[1]  陆婧婧. 植物乳杆菌调节抑制高脂诱导小鼠肥胖的形成[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2019: 2-5.
[2]  田建军, 张开屏, 李权威, 等. 乳酸菌调控胆固醇代谢的物质基础研究进展[J]. 食品科学, 2019, 40(19): 334-339.
[3]  郭晶晶, 乌日娜, 安飞宇, 等. 植物乳杆菌WW对高脂血症大鼠体脂的影响[J]. 食品科学, 2019, 40(9): 139-145.
[4]  杨动听. 发酵乳杆菌ZJUIDS06与植物乳杆菌ZY08降胆固醇机制初探及其在Monterey Jack干酪中的应用[D]: [硕士学位论文]. 杭州: 浙江大学, 2021: 1-7.
[5]  郑佳, 何腊平, 陈翠翠, 等. 降胆固醇益生菌对马铃薯酸奶发酵的影响与品质分析[J]. 食品科学, 2020, 41(10): 145-151.
[6]  颜旭, 王方杰, 吴祖芳. 乳酸菌发酵胡柚汁对小鼠肥胖的调节作用[J]. 食品科学, 2021(15): 167-173.
[7]  Pei, S.L., Loke, C.F., Yin, W.H., et al. (2020) Cholesterol Homeostasis Associated with Probiotic Supplementation in Vivo. Journal of Applied Microbiology, 129, 1374-1388.
https://doi.org/10.1111/jam.14678
[8]  Ding, Z., Hani, A., Li, W., et al. (2020) In-fluence of a Cholesterol-Lowering Strain Lactobacillus plantarum LP3 Isolated from Traditional Fermented Yak Milk on Gut Bacterial Microbiota and Metabolome of Rats Fed with a High-Fat Diet. Food & Function, 11, 8342-8353.
https://doi.org/10.1039/D0FO01939A
[9]  Bellosta, S. (2004) Safety of Statins: Focus on Clinical Pharmacokinet-ics and Drug Interactions. Circulation, 109, III50-III70.
[10]  Tosteson, H. and Ridker, P.M. (2010) The Primary Pre-vention of Myocardial Infarction. European Journal of Haematology, 25, 38-44.
[11]  Knopp, R.H. (1999) Drug Treat-ment of Lipid Disorders. New England Journal of Medicine, 341, 498-511.
https://doi.org/10.1056/NEJM199908123410707
[12]  Hsiao, Y.H., Wang, Y.H., Lin, W.S., et al. (2021) Molecu-lar Mechanisms of the Anti-Obesity Properties of Agardhiella subulata in Mice Fed a High-Fat Diet. Journal of Agricul-tural and Food Chemistry, 69, 4745-4754.
https://doi.org/10.1021/acs.jafc.1c01117
[13]  An, M., Park, Y.H. and Lim, Y.H. (2021) Antiobesity and Antidia-betic Effects of the Dairy Bacterium Propionibacterium freudenreichii MJ2 in High-Fat Diet-Induced Obese Mice by Modulating Lipid Metabolism. Scientific Reports, 11, 2481-2494.
https://doi.org/10.1038/s41598-021-82282-5
[14]  Palaniyandi, S.A., Damodharan, K., Suh, J.W., et al. (2020) Probiotic Characterization of Cholesterol-Lowering Lactobacillus fermentum MJM60397. Probiotics and Antimicrobial Proteins, 12, 1161-1172.
https://doi.org/10.1007/s12602-019-09585-y
[15]  Klaver, F. and van der Meer, R. (1993) The Assumed Assimila-tion of Cholesterol by Lactobacilli and Bifidobacterium bifidum Is Due to Their Bile Salt-Deconjugating Activity. Applied and Environmental Microbiology, 59, 1120-1124.
https://doi.org/10.1128/aem.59.4.1120-1124.1993
[16]  Gilliland, S.E. and Speck, M.L. (1977) Deconjugation of Bile Acids by Intestinal Lactobacilli. Applied and Environmental Microbiology, 33, 15-18.
https://doi.org/10.1128/aem.33.1.15-18.1977
[17]  Rai, J.L., Vujii, I.F., Krinjar, M., et al. (1992) Assimilation of Cholesterol by Some Cultures of Lactic Acid Bacteria and Bifidobacteria. Biotechnology Letters, 14, 39-44.
https://doi.org/10.1007/BF01030911
[18]  Liong, M.T. and Shah, N.P. (2005) Bile Salt Deconjugation and BSH Activity of Five Bifidobacterial Strains and Their Cholesterol Co-Precipitating Properties. Food Research International, 38, 135-142.
https://doi.org/10.1016/j.foodres.2004.08.003
[19]  姚泽晨. 植物乳杆菌微胶囊及其壁材对小鼠肥胖的预防作用[D]: [硕士学位论文]. 无锡: 江南大学, 2019: 1-5.
[20]  赵茂臻, 梁曦, 张喆, 等. 植物乳杆菌F3-2联合甘露低聚糖通过上调短链脂肪酸水平抑制PPARγ改善小鼠肥胖[J]. 食品与发酵工业, 2021, 47(23): 78-82.
[21]  李杰. 降胆固醇乳酸菌的筛选及其对高脂模型大鼠的影响[D]: [硕士学位论文]. 太原: 山西大学, 2020: 3-13.
[22]  张静, 仇伟, 黄月, 等. 植物乳杆菌KFY02发酵柠檬汁对高脂饮食小鼠肥胖的抑制作用及肠道菌群调节作用[J]. 食品工业科技, 2021, 42(24): 344-353.
[23]  陈仪婷, 张红星, 谢远红, 等. 降胆固醇乳酸菌的筛选鉴定及其耐酸耐胆盐性能研究[J]. 食品与发酵工业, 2018, 44(5): 29-33.
[24]  朱婕旭, 高利娥, 黄文康, 等. 两株乳酸菌对高脂模型大鼠的益生作用[J]. 食品科学, 2020, 41(1): 196-202.
[25]  刘尧尧, 李璐, 柳婷婷, 等. 植物乳杆菌菌粉对肥胖大鼠肠道黏膜屏障功能的影响[J]. 食品科学, 2020, 41(17): 153-160.
[26]  王苗, 张保杰, 文佳嘉, 等. 两种乳酸杆菌对肥胖小鼠的干预作用[J]. 食品科学, 2021, 42(5): 152-159.
[27]  陆婧婧, 宋月, 岳莹雪, 等. 两株植物乳杆菌联合抑制高脂诱导小鼠肥胖的形成[J]. 食品工业科技, 2019, 40(19): 286-290.
[28]  Bosch, M., Fuentes, M.C., Au-divert, S., et al. (2014) Lactobacillus plantarum CECT 7527, 7528 and 7529: Probiotic Candidates to Reduce Cholesterol Levels. Journal of the Science of Food and Agriculture, 94, 803-809.
https://doi.org/10.1002/jsfa.6467
[29]  Lim, F.T., Lim, S.M. and Ramasamy, K. (2017) Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 Assimilate Cholesterol and Modulate ABCA1, CD36, NPC1L1 and SCARB1 in Vitro. Beneficial Microbes, 8, 97-109
[30]  Jeung, W.H., Nam, W., Kim, H.J., et al. (2019) Oral Admin-istration of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 with Cinnamomi ramulus Extract Reduces Diet-Induced Obesity and Modulates Gut Microbiota. Preventive Nutrition and Food Science, 24, 136-143.
https://doi.org/10.3746/pnf.2019.24.2.136
[31]  Yu, B.J., Lee, J. and Chang, H.C. (2019) Characterization of Juice Fermented with Lactobacillus plantarum EM and Its Cholesterol-Lowering Effects on Rats Fed a High-Fat and High Cholesterol Diet. Food Science & Nutrition, 7, 3622-3634.
https://doi.org/10.1002/fsn3.1217
[32]  Aminlari, L., Shekarforoush, S.S., Hosseinzadeh, S., et al. (2019) Effect of Probiotics Bacillus coagulans and Lactobacillus planta-rum on Lipid Profile and Feces Bacteria of Rats Fed Cholesterol-Enriched Diet. Probiotics and Antimicrobial Proteins, 11, 1163-1171.
[33]  Gan, Y., Tang, M., Tan, F., et al. (2020) Anti-Obesity Effect of Lactobacillus plantarum CQPC01 by Modulating Lipid Metabolism in High-Fat Diet Induced C57BL/6 Mice. Journal of Food Biochemistry, 44, 1-11.
https://doi.org/10.1111/jfbc.13491
[34]  Kim, S. and Lim, S.D. (2017) Physiological Characteristics and An-ti-Obesity Effect of Lactobacillus plantarum K6 Isolated from Kimchi. Journal of Milk Science and Biotechnology, 35, 221-231.
https://doi.org/10.22424/jmsb.2017.35.4.221
[35]  Kim, S., Huang, E., Park, S., et al. (2018) Physiological Charac-teristics and Anti-Obesity Effect of Lactobacillus plantarum K10. Korean Journal for Food Science of Animal Resources, 38, 554-569.
[36]  Kim, S. and Lim, S.D. (2020) Physiological Characteristics and Anti-Obesity Effect of Milk Fer-mented by Lactobacillus plantarum KI134. Journal of Dairy Science and Biotechnology, 38, 207-221.
https://doi.org/10.22424/jdsb.2020.38.4.207
[37]  Choi, W.J., Dong, H.J., Jeong, H.U., et al. (2020) Lactobacillus plantarum LMT1-48 Exerts Anti-Obesity Effect in High-Fat Diet-Induced Obese Mice by Regulating Expression of Li-pogenic Genes. Scientific Reports, 10, 869-878.
https://doi.org/10.1038/s41598-020-57615-5
[38]  Huang, E., Kim, S.P., Ar, K.H., et al. (2020) Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus plantarum KC28 in a Diet-Induced Obesity Murine Model. Probiotics and Antimicrobial Proteins, 13, 1-21.
[39]  曹海鹏, 姬邓红, 黄作芳, 等. 一株强吸附胆固醇乳酸菌的分离鉴定及益生特性研究[J]. 中国酿造, 2022, 41(3): 110-116.
[40]  Mishra, A.K., Kumar, S.S. and Ghosh, A.R. (2019) Probiotic Enterococcus faecalis AG5 Effectively Assimilates Cholesterol and Produces Fatty Acids Including Propionate. FEMS Microbiology Letters, 366, fnz039.
[41]  Zhang, Y., Wu, N.Q., Li, S., et al. (2016) Non-HDL-C Is a Better Pre-dictor for the Severity of Coronary Atherosclerosis Compared with LDL-C. Heart Lung & Circulation, 25, 975-981.
https://doi.org/10.1016/j.hlc.2016.04.025
[42]  Stoekenbroek, R.M., Boekholdt, S.M., Fayyad, R., et al. (2015) High-Dose Atorvastatin Is Superior to Moderate-Dose Simvastatin in Preventing Peripheral Arterial Disease. Heart, 101, 356-362.
https://doi.org/10.1136/heartjnl-2014-306906

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133