全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于OpenPose的脑卒中肢体康复训练评估辅助系统开发
Development of an OpenPose-Based Assessment Aid System for Stroke Physical Rehabilitation Training

DOI: 10.12677/AIRR.2022.113031, PP. 299-307

Keywords: 计算机视觉,神经网络,OpenPose算法,MoveNet算法
Computer Vision
, Neural Networks, OpenPose Algorithm, MoveNet Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对脑卒中患者的居家肢体康复训练缺乏指导、看护者的康复知识欠缺的问题,开发一套针对脑卒中患者肢体康复训练的智能化辅助系统。通过摄像头获取患者康复训练过程中的图像,利用OpenPose与MoveNet姿态检测库与提取患者训练过程的实时动作骨架坐标序列,构建用户肢体运动评价模型,对康复训练者的训练过程进行评价,得出训练者的康复训练质量,并通过文字提示的方式提醒用户不达标的动作以及改正方式,指导和引导患者逐步达到康复训练的标准。
To address the problems of lack of guidance and caregiver’s knowledge in home physical rehabilitation training for stroke patients, an intelligent assisted system for physical rehabilitation training of stroke patients was developed. The system uses the OpenPose and MoveNet posture detection libraries to extract the real-time skeleton coordinate sequences of the patient’s training process, construct a user’s limb movement evaluation model, evaluate the training process of the trainer, and derive the quality of the trainer’s rehabilitation training, and remind the user of the substandard movements and the correction methods through text prompts. It also reminds the user of the substandard movements and the ways to correct them by means of textual prompts, and guides the patient to gradually achieve the rehabilitation training standard.

References

[1]  王艳杰, 张丽娟. 近五年脑卒中康复训练领域研究热点的文献计量学分析[J]. 循证护理, 2022(4): 500-505.
[2]  丁杏, 赵小玉. 成都市社区脑卒中患者自我护理能力与护理需求的调查研究[J]. 护士进修杂志, 2022, 37(5): 424-429.
[3]  吴晓云. 脑卒中运动障碍康复护理的研究进展[J]. 中国城乡企业卫生, 2022, 37(2): 41-43.
[4]  张小华, 曾媛媛, 王玉龙. 上肢康复机器人训练对脑卒中患者上肢功能的疗效观察[J]. 中国医学创新, 2017, 14(22): 29-31.
[5]  王越, 张春青, 王悦, 甘宁, 戎善奎, 江潇, 计雄飞, 余新华. 国内外医用康复器械分类与管理现状[J]. 中国医疗设备, 2022, 37(3): 163-166.
[6]  李夏楠. 中国农村脑卒中患者康复产品服务设计研究[D]: [硕士学位论文]. 郑州: 郑州轻工业大学, 2020: 77.
[7]  李春阳. 彩色图像灰度化及其效果的客观评价方法研究[J]. 流行色, 2021(12): 93-95.
[8]  Cao, Z., et al. (2021) OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 172-186.
https://doi.org/10.1109/TPAMI.2019.2929257
[9]  Karen, S. and Andrew, Z. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. iComputer Science, 15, 75-80.
[10]  Cao, Z., Simon, T., Wei, S.E., et al. (2017) Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 7291-7299.
https://doi.org/10.1109/CVPR.2017.143
[11]  Bulat, A. and Tzimiropoulos, G. (2016) Human Pose Estimation via Convolutional Part Heatmap Regression. 14th European Conference, Amsterdam, 11-14 October 2016, 717-732.
https://doi.org/10.1007/978-3-319-46478-7_44
[12]  Sandler, M., Howard, A., Zhu, M.L., Zhmoginov, A. and Chen, L.-C. (2018) MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, 18-23 June 2018, 4510-4520.
https://doi.org/10.1109/CVPR.2018.00474
https://www.computer.org/csdl/proceedings-article/cvpr/2018/642000e510/17D45Wuc32W
[13]  Howard, A.G., et al. (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
https://arxiv.org/abs/1704.04861
[14]  王皓文, 桑农. 基于序列对抗域适应的智能裁剪算法[J]. 模式识别与人工智能, 2021, 34(8): 677-688.
[15]  刘金钢. 基于逆协方差交叉融合的多传感器非线性滤波器[J]. 黑龙江大学工程学报, 2021, 12(4): 59-65.
[16]  肖文福, 孙燚. 一种基于深度可分离卷积的实时多人姿态估计[J]. 计算机应用研究, 2020, 37(S2): 348-350.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133