|
康复机器人模块化设计研究
|
Abstract:
模块化机器人是将机器人复杂的整体结构通过功能的不同划分成多个模组并进行模块化组合,每个模组发挥着不同的作用但又相互关联,相比于传统机器人繁杂的设计和工作的局限性,模块化机器人具有功能多样化、操控范围广、通用性强、扩展性高、制造成本低等多重优点,现已成为机器人领域的一重要研究方向,康复机器人作为一种新型的机器人种类,涉及多学科知识交叉融合,包含康复医学、计算机科学、机械电子等诸多领域,正因为如此使得康复机器人架构非常复杂,如果熟练的运用模块化设计方法,可以有效地制造出功能优越,满足人们需求的康复机器人种类。本文的主要内容是对康复机器人模块化设计研究做一个论述,包括机器人模块化设计的研究进展、模块化设计的研究内容以及在康复机器人方面的应用等,并在此基础上分析可能存在的问题,和对未来的研究方向和发展趋势作出展望。
Modular robot is to divide the complex overall structure of robot into multiple modules and carry out modular combination through different functions. Each module plays different roles but is interrelated. Compared with the complicated design and work limitations of traditional robots, modular robot has multiple advantages such as diverse functions, wide control range, strong universality, high expansibility and low manufacturing cost, It has become an important research direction in the robot field. As a new type of robot, rehabilitation robot involves the cross integration of multi-disciplinary knowledge, including rehabilitation medicine, computer science, mechanical electronics and many other fields. Because of this, the structure of rehabilitation robot is very complex. If you skillfully use the modular design method, you can effectively create a kind of rehabilitation robot with superior functions and meet people’s needs. The main content of this paper is to discuss the research on modular design of rehabilitation robot, including the research progress of modular design of robot, the research content of modular design and its application in rehabilitation robot. On this basis, the possible problems are analyzed, and the future research direction and development trend are prospected.
[1] | 李树民, 邸韬, 邸仕虎. 模块化工业机器人运动控制系统研究与设计[J]. 中国建材科技, 2019, 28(2): 108+107. |
[2] | 朱威, 郭宪, 方勇纯, 张学有. 可重构模块化蛇形机器人研制及多运动模态研究[J]. 信息与控制, 2020, 49(1): 69-77. |
[3] | 祝洲杰, 甘伟, 黄畅, 胡章豪, 冯晨韬. 小型模块化多功能科教机器人的设计与实践研究[J]. 机电工程技术, 2020, 49(10): 138-140. |
[4] | 吴文强, 管贻生, 朱海飞, 苏满佳, 李怀珠, 周雪峰. 面向任务的可重构模块化机器人构型设计[J]. 哈尔滨工业大学学报, 2014, 46(3): 93-98. |
[5] | 田闯. 工业机器人的现状及发展趋势研究[J]. 中国管理信息化, 2019, 22(20): 156. |
[6] | 陈维. 模块化自装配机器人的系统设计与研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020. |
[7] | 李能菲, 常辉, 王奎. 基于LabVIEW的多控模块化机器人控制设计[J]. 电脑知识与技术, 2022(11): 107-109. |
[8] | Pezent, E., Rose, C.G., Deshpande, A.D., et al. (2017) Design and Characterization of the Openwrist: A Robotic Wrist Exoskeleton for Coordinated Hand-Wrist Rehabilitation. 2017 International Conference on Rehabilitation Robotics (ICORR), London, 17-20 July 2017, 720-725. https://doi.org/10.1109/ICORR.2017.8009333 |
[9] | 郦滢澄, 虞泽宇, 张龙涵, 郭兆阳, 马新玲. 多功能模块化居家整理机器人的结构设计[J]. 轻工机械, 2020, 38(6): 86-91. |
[10] | 吴文强, 管贻生, 朱海飞, 苏满佳, 李怀珠, 周雪峰. 面向任务的可重构模块化机器人构型设计[J]. 哈尔滨工业大学学报, 2014, 46(3): 93-98. |
[11] | 机器人大讲堂. 深度解析康复机器人的现状、机遇和未来[EB/OL].
http://www.compsys.ia.ac.cn/kfjiqiren.html, 2018-04-12. |
[12] | 戴野, 张启昊, 高语斐, 等. 自重构模块化机器人模块设计综述[J]. 哈尔滨理工大学学报, 2021, 26(5): 34-43.
https://doi.org/10.15938/j.jhust.2021.05.005 |
[13] | 薛建明. 医疗外骨骼康复机器人的发展[J]. 医学信息, 2019, 32(9): 11-13. |
[14] | Jacob, S., Menon, V.G., Al-Turjman, F. and Mostarda, L. (2019) Artificial Muscle Intelligence System with Deep Learning for Post-Stroke Assistance and Rehabilitation. IEEE Access, 7, 133463-133473.
https://doi.org/10.1109/ACCESS.2019.2941491 |
[15] | 韩稷钰, 王衍鸿, 万大千. 下肢外骨骼康复机器人的研究进展及发展趋势[J]. 上海交通大学学报(医学版), 2022, 42(2): 241-246. https://doi.org/10.3969/j.issn.1674-8115.2022.02.017 |
[16] | Lee, W., Kim, S., Kim, B., Lee, C., Chung, Y.A., Kim, L. and Yoo, S.-S. (2017) Non-Invasive Transmission of Sensorimotor Information in Humans Using an EEG/Focused Ultrasound Brain-to-Brain Interface. PLOS ONE, 12, e0178476. https://doi.org/10.1371/journal.pone.0178476 |
[17] | Sarac, M., Solazzi, M. and Frisoli, A. (2019) Design Requirements of Generic Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation, Assistive, or Haptic Use. IEEE Transactions on Haptics, 12, 400-413.
https://doi.org/10.1109/TOH.2019.2924881 |
[18] | Shepherd, M.K. and Rouse, E.J. (2017) Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance. IEEE/ASME Transactions on Mechatronics, 22, 1695-1704. |
[19] | Ao, D., Song, R. and Gao, J. (2017) Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 1125-1134. https://doi.org/10.1109/TNSRE.2016.2583464 |
[20] | Jacob, S., et al. (2020) An Adaptive and Flexible Brain Energized Full Body Exoskeleton with IoT Edge for Assisting the Paralyzed Patients. IEEE Access, 8, 100721-100731. https://doi.org/10.1109/ACCESS.2020.2997727 |
[21] | Chen, B., Zi, B., Wang, Z., Qin, L. and Liao, W.H. (2019) Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art. Mechanism and Machine Theory, 134, 499-511.
https://doi.org/10.1016/j.mechmachtheory.2019.01.016 |
[22] | 李超. 外骨骼下肢康复机器人系统开发及其柔顺控制研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2019. |
[23] | Feng, J.K. and Liu, J.G. (2021) Configuration Analysis of a Chain-Type Reconfigurable Modular Robot Inspired by Normal Alkane. Science China (Technological Sciences), 64, 1167-1176. https://doi.org/10.1007/s11431-020-1816-0 |
[24] | Ma, H., Chen, B., Qin, L. and Liao, W.H. (2017) Design and Testing of a Regenerative Magnetorheological Actuator for Assistive Knee Braces. Smart Materials and Structures, 26, Article ID: 035013.
https://doi.org/10.1088/1361-665X/aa57c5 |
[25] | Moltedo, M., Bacek, T., Junius, K., Vanderborght, B. and Lefeber, D. (2016) Mechanical Design of a Lightweight Compliant and Adaptable Active Ankle Foot Orthosis. Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26-29 June 2016, 1224-1229.
https://doi.org/10.1109/BIOROB.2016.7523798 |
[26] | Lugrís, U., Carlín, J., Luaces, A. and Cuadrado, J. (2013) Gait Analysis System for Spinal Cord Injured Subjects Assisted by Active Orthoses and Crutches. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 227, 363-374. |
[27] | Zhang, L. and Li, J. (2019) Improvement of Human-Machine Compatibility of Upper-Limb Rehabilitation Exoskeleton Using Passive Joints. Robotics & Autonomous Systems, 112, 22-31. https://doi.org/10.1016/j.robot.2018.10.012 |
[28] | 柴静. 手部康复机器人用户定制设计[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2019. |
[29] | Spaeth, A., Tebyani, M., Haussler, D. and Teodorescu, M. (2020) Spiking Neural State Machine for Gait Frequency Entrainment in a Flexible Modular Robot. PLOS ONE, 15, e0240267. https://doi.org/10.1371/journal.pone.0240267 |
[30] | 石文韬, 孟青云, 喻洪流, 郭帅. 一种模块化的腕关节康复训练器设计与仿真[J]. 软件导刊, 2021, 20(2): 135-141. |
[31] | 李伟达, 王柱, 张虹淼, 李娟, 顾洪. 床式步态康复训练系统机构设计[J]. 浙江大学学报: 工学版, 2021, 55(5): 823-830 |
[32] | 刘开元. 链式可重构模块化机器人设计及重构策略研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2019. |
[33] | 刘策越, 刘建功, 刘扬, 等. 模块化机器人的模块形态特性[J]. 吉林大学学报(工学版), 2019, 49(1): 199-208.
https://doi.org/10.13229/j.cnki.jdxbgxb20170963 |
[34] | 赵思恺, 李长乐, 张宗伟, 等. 模块化可重构外肢体机器人[J]. 哈尔滨理工大学报, 2021, 42(4): 218. |
[35] | 陈刚, 东辉. 自重构仿生四足机器人运动学分析及仿真[J]. 机械制造与自动化, 2021, 50(2): 95. |