全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进YOLOX-S网络的金属表面缺陷图像检测
Image Detection of Metal Surface Defects Based on Improved YOLOX-S Network

DOI: 10.12677/MET.2022.114044, PP. 384-392

Keywords: 改进YOLOX-S,注意力机制,损失函数,图像检测
Improved YOLOX-S
, Attention Mechanism, Loss Function, Image Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文为了实现金属零件制造和加工环节中表面缺陷的图像检测识别,提高金属零件加工流水线过程中不合格产品的图像检测准确率,提升金属缺陷检测过程中的设备自动化水平,解决人工检测中易疲劳、检测效率低、检测精度低、主观性强和无法适应大批量高质量零件的检测问题。提出一种基于改进YOLOX-S的卷积神经网络金属表面缺陷图像检测模型。该模型在原有的YOLOX-S的网络基础上引入注意力机制模块,优化模型参数,改进边界框位置回归损失函数与置信度损失函数,构建和实现对金属表面常见缺陷种类的图像检测模型。改进后的YOLOX-S模型能更快地收敛,添加边界框位置回归损失函数和注意力机制的模型,mAP值由94.23%提升为96.14%,准确率提升效果最好,同时仅增加较少的推理时间。与YOLOX-S模型以及添加不同改进方法模型作对比分析表明基于边界框位置回归损失函数和注意力机制改进的模型综合识别效果最好,能满足金属表面缺陷图像检测的要求,减少金属零件生产过程中的缺陷产品流出。
In order to realize the image detection and identification of surface defects in the manufacturing and processing of metal parts, improve the image detection accuracy of unqualified products in the process of metal parts processing assembly line, improve the automation level of equipment in the process of metal defect detection, and solve the problems of easy fatigue, low detection efficiency, low detection accuracy, strong subjectivity and inability to adapt to the detection of large quantities of high-quality parts in manual detection. A convolution neural network model based on improved YOLOX-S is proposed for metal surface defect image detection. The model changed the structure of the unit module and introduced the attention mechanism module based on the original YOLOX-S model, which optimized the model parameters and improved bounding box position regression loss function and confidence loss function, and then the image detection model of common defects on the metal surface was constructed and realized. The results showed that the loss of improved YOLOX-S model could converge faster, the model with bounding box position regression loss function and attention mechanism added, its mAP increased from 94.23% to 96.14%, and the accuracy improvement effect is the best, while only a small amount of reasoning time is increased. Compared with the YOLOX-S model and the model with different improved methods, it is shown that the improved model based on bounding box position regression loss function and attention mechanism has the best comprehensive recognition effect, which can meet the requirements of metal surface defect image detection and reduce the outflow of defective products in the production process of metal parts.

References

[1]  李燕. 铁基粉末冶金零件常见生产缺陷的金相分析[J]. 山西冶金, 2017, 40(5): 87-89.
[2]  方德伟. 超声波检测技术在无缝钢管质量缺陷检测中的应用研究[J]. 科技视界, 2019(12): 37-38.
[3]  周心悦. 基于机器视觉的金属片表面缺陷实时检测与分类研究[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2021: 11-23.
[4]  李少波, 杨静, 王铮, 等. 缺陷检测技术的发展与应用研究综述[J]. 自动化学报, 2020, 46(11): 2319-2336.
[5]  李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292.
[6]  孙连山, 魏婧雪, 朱登明, 等. 基于AM-YOLOv3模型的铝型材表面缺陷检测算法[J]. 激光与光电子学进展, 2021, 58(24): 360-370.
[7]  Tian, R. and Jia, M. (2022) DCC-CenterNet: A Rapid Detection Method for Steel Surface Defects. Measurement, 187, Article ID: 110211.
https://doi.org/10.1016/j.measurement.2021.110211
[8]  He, Y., Song, K., Meng, Q., et al. (2020) An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Fea-tures. IEEE Transactions on Instrumentation and Measurement, 69, 1493-1504.
https://doi.org/10.1109/TIM.2019.2915404
[9]  Redmon, J. and Farhadi, A. (2018) YOLOv3: An Incremental Improvement. CoRR. arXiv:1804.02767.
[10]  Redmon, J. and Farhadi, A. (2017) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525.
https://doi.org/10.1109/CVPR.2017.690
[11]  Lin, T.Y., Goyal, P., Girshick, R., et al. (2017) Focal Loss for Dense Object Detection. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 2999-3007.
https://doi.org/10.1109/ICCV.2017.324
[12]  Zhang, Y.F., Ren, W., Zhang, Z., et al. (2021) Focal and Efficient IOU Loss for Accurate Bounding Box Regression. CoRR. arXiv:2101.08158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133