全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Tyrosine Kinase Receptors in Growth Factor Mediated Signal Transduction, with Specific Reference to MAPK/Rasand p13k-Akt Containing Pathways in Oncogenesis: A Qualitative Database Review

DOI: 10.4236/ajmb.2022.124012, PP. 135-146

Keywords: Receptor Tyrosine Kinase, PI3/AKT, MAP Kinase, PTEN, Cancer, Receptor Inhibitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Receptor Tyrosine kinases (RTKs) play a crucial role in the signal transduction pathways at cellular levels. RTK plays a vital role in cellular communication and transmission of signals to the adjacent cells and regulates different functions of the cell, such as cellular growth, differentiation, metabolism and motility. RTK s triggers growth factor receptors such as epidermal growth factor, insulin growth factor-1 receptor, platelet derived growth factor receptor, and fibro blast growth factor receptor and vascular endothelial growth factor receptor, thereby initiating and regulating cell growth and proliferation. MAPK/RAS and PI3/AKT pathways are the major pathways of RTK’s function. Dysregulation of these RTK’s and pathways often leads to many diseases such as Noonan Syndrome, Logius Syndrome, CFC syndrome and different types of cancer. Point mutation and over expression of receptors and mutations in Ras leads to 30% of human cancers. Also over expression of different growth factor receptors by RTK too lead to several types of cancers as Glioblastoma, Thyroid cancer, Colon cancer and Non-small cell lung cancer. PTEN mutation in PI3/AKT pathway often leads to carcinoma relative to Thyroid, Skin, Large intestine, eye and Bone. Therefore, these RTK’s often used as targets for cancer therapies. The medical sector uses various types of small molecule tyrosine kinase inhibitors such as ATP competitive inhibitors, Allosteric inhibitors and covalent inhibitors which are known as Afatinib, Crizotinib, Eroltinib, Icotinib, Lepatinib and Lenvatinib in treatment and management of differential carcinomas.

References

[1]  Brand, T.M., Lida, M., Corrigan, K.L., Braverman, C.M., Coan, J.P., Flanigan, B.G., Stein, A.P., Salgia, R., Rolff, J., Kimple, R.J. and Wheeler, D.L. (2017) The Receptor Tyrosine Kinase AXL Mediates Nuclear Translocation of the Epidermal Growth Factors. Science Signaling, 10, eaag1064.
https://doi.org/10.1126/scisignal.aag1064
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094775
[2]  Pinheiro, K.V., Alves, C., Buendia, M., Gil, M.S., Thomaz, M., Schwartsmann, G., Farias, C.M., Roester, R., Bowman, R.L., Wang, Q., Carro, A., Verhaak, R.G.W. and Squatrito, M. (2017) Targeting Tyrosine Kinase B in Gliomas. Nuero-Oncology, 19, 138-139.
https://doi.org/10.1093/neuonc/now199
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193030/
[3]  Endo, M., Ubulkasim, G., Kobayashi, C., Onishi, R., Aiba, A. and Minami, Y. (2016) Critical Role of Ror2 Receptor Tyrosine Kinase in Regulating Cell Cycle Progression of Reactive Astrocytes Following Brain Injury. Glia, 65, 182-197.
https://doi.org/10.1002/glia.23086
[4]  Hubbard, S.R. and Miller, W.T. (2007) Receptor Tyrosine Kinases: Mechanisms of Activation and Signaling. Current Opinion in Cell Biology, 19, 117-123.
https://doi.org/10.1016/j.ceb.2007.02.010
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536775/pdf/nihms51748.pdf
[5]  Lemmon, M.A. and Schlessinger, J. (2010) Cell Signaling by Receptor Tyrosine Kinase. Cell, 141, 1117-1134.
https://doi.org/10.1016/j.cell.2010.06.011
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914105
[6]  Wagner, M.J., Stacey, M.M., Liu, B.A. and Pawson, T. (2013) Molecular Mechanisms of SH2- and PTBDomain-Containing Proteins in Receptor Tyrosine Kinase Signaling. Cold Spring Harbor Perspectives in Biology, 5, a008987.
https://doi.org/10.1101/cshperspect.a008987
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839611/pdf/cshperspect-RTK-a008987.pdf
[7]  Terrell, E.M. and Morrison D.K. (2019) Ras-Mediated Activation of the Raf Family Kinases. Cold Spring Harbor Perspectives in Biology, 9, a033746.
https://doi.org/10.1101/cshperspect.a033746
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311149/pdf/cshperspectmed-RAC-a033746.pdf
[8]  Liu, P., Cheng, H., Roberts, T.M. and Zhao, J.J. (2009) Targeting the Phosphoinositide 3-Kinase (PI3K) Pathway in Cancer. Nature Reviews Drug Discovery, 8, 627-644.
https://doi.org/10.1038/nrd2926
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142564/pdf/nihms212276.pdf
[9]  Cargnello, M. and Roux, P.P. (2011) Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews, 75, 50-83.
https://doi.org/10.1128/MMBR.00031-10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063353/
[10]  Roy, S.K., Srivastava, R.K. and Shankar, S. (2010) Inhibition of PI3K/AKT and MAPK/ERK Pathways Causes Activation of FOXO Transcription Factor, Leading to Cell Cycle Arrest and Apoptosis in Pancreatic Cancer. Journal of Molecular Signalling, 5, 10-17.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915986/
https://doi.org/10.1186/1750-2187-5-10
[11]  Hemmings, B.A. and Restuccia, D.F. (2017) PI3K-PKB/AKT Pathway. Cold Spring Harbor Perspectives in Biology, 4, a011189.
http://cshperspectives.cshlp.org/content/4/9/a011189.full.pdf+html
https://doi.org/10.1101/cshperspect.a011189
[12]  Tian, J.H., Xue, B., Hu, J.H., Li, J.X., Cheng, Y., Hu, J.S., Li, Y.H., Chen, Y.H. and Li, B. (2016) Exogenous Substances Regulates Silkworm Fat Body Protein Synthesis through Mapk and PI3/AKT Signaling Pathways. Chemosphere, 171, 202-207.
http://www.sciencedirect.com/science/article/pii/S0045653516318100
https://doi.org/10.1016/j.chemosphere.2016.12.080
[13]  Goodwin, A.F., Oberi, S., Landan, M., Charles, C., Groth, J., Martinez, A., Fairley, C., Weiss, L.A., Tidyman, W.E., Klein, O.D. and Raven, K. (2013) Cranifacial and Dental Development in Cardio-Facio-Cutaneous Syndrome: The Important of Ras Signaling Homeostasis. Clinical Genetics, 83, 539-544.
https://pubmed.ncbi.nlm.nih.gov/22946697
https://doi.org/10.1111/cge.12005
[14]  Kratz, C.P., Rapisuwon, S., Reed, H., Hasle, H. and Rosenberg, P.S. (2011) Cancer in Noonan, Coskllo, Cardio Fascia Cutaneous and LEOPARD Syndrome. Seminars in Medical Genetics, Part C of the American Journal of Medical Genetics, 157, 83-89.
https://pubmed.ncbi.nlm.nih.gov/21500339
https://doi.org/10.1002/ajmg.c.30300
[15]  Zenker, M., Edouard, T., Blair, J.C. and Cappa, M. (2022) Noonan Syndrome: Improving Recognition and Diagnosis. Archives of Disease in Childhood, 1-6.
https://doi.org/10.1136/archdischild-2021-322858
[16]  Yu, T.W.H., Hughes, H.Y., Liu, B., Kendril, A., Klein, K., Chen, W.W., Lander, E.S. and Sabatini, D.M. (2017) Gene Essentially Proliferating Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell, 168, 890-903.e15.
https://doi.org/10.1136/archdischild-2021-322858
https://doi.org/10.1016/j.cell.2017.01.013
[17]  Roberts, P.J. and Der, C.J. (2007) Targeting the Raf-MEK-ERK Mitogen-Activated Protein Kinase Cascade for the Treatment of Cancer. Oncogene, 26, 3291-3310.
https://www.ncbi.nlm.nih.gov/pubmed/17496923
https://doi.org/10.1038/sj.onc.1210422
[18]  Cohen, Y., Xing, M., Mambo, E., Guo, Z., Wu, G., Trink, B., Beller, U., Westra, W.H., Labdenon, P.W. and Sidransky, D. (2003) BRAF Mutation in Papillary Thyroid Carcinoma. Journal of National Cancer Institute, 95, 625-627.
https://pubmed.ncbi.nlm.nih.gov/12697856/
https://doi.org/10.1093/jnci/95.8.625
[19]  Filho, J.C.R., Ryder, M., Chitale, D.A., Rivera, M., Heguy, A., Ladangi, M., Janakiraman, M., Solit, D., Krauf, J.A., Tuttle, R.M., Ghossein, R.A. and Fagin, J.A. (2009) Nutational Profile of Advanced Primary Metastatic Radioactive Iodine-Refractory Thyroid Cancers Reveals Distinct Pathogenic Role for BRAF, PIK3CA and AKT1. Cancer Research, 69, 4885-4893.
https://doi.org/10.1158/0008-5472.CAN-09-0727
[20]  Mathew, G., Hannan, A., Schaefer, K.H., Wang, F., Feng, G.S., Zhong, J.J.Z., Downward, J. and Zhang, X. (2016) Targeting of Ras-Mediated FGF Signaling Suppresses, PTEN Deficient Skin Tumor. Proceedings of the National Academy of Sciences of the United States of America, 113, 13156-13161.
https://doi.org/10.1073/pnas.1604450113
[21]  Shao, W., Mischina, Y., Caponigro, G., Ramurthy, S., Cooke, V., Griner, L., Nishiguchi, G., Rico, A., Taft, B., Burger, M., Tanner, H., Polyakov, V., Appleton, B., Tellew, J., Zang, R., Amiri, P., Singh, M. and Stuart, D. (2016) Development of a Highly Selective B/CRAF Kinase Inhibitor That Exhibits Antitumour Activities in Ras and BRAF Mutation. American Journal of Cancer, 16, 242-258.
[22]  Boutin, A.T., Liao, W.T., Wang, M., Huwang, S.S., Karpinets, T.V., Cheung, H., Chu, G.C., Jiang, S., Hu, J., Chang, K., Vilar, E., Song, X., Zhang, J., Kopetz, S., Futreal, A., Wang, Y.A., Wong, L.N. and Depinho, R.A. (2017) Oncogenic Kras Drives Invasion and Maintains Metastases in Colorectal Cancer. Genes and Development, 31, 370-382.
https://doi.org/10.1101/gad.297630.117
[23]  Maleka, A., Astron, G., Bystrom, P. and Ullenhang, G.J. (2016) A Case Report of a Patient with Metastatic Ocular Melanoma Who Experienced a Response to Treatment with the BRAF Inhibitor Vemurafenib. BMC Cancer, 16, Article No. 634.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983009
[24]  George, P.E., Davidson, L., Malafronte, P.J., Centrell, S. and Theeler, B.J. (2017) PIK3CA Mutation in a Mixed Dysembryoplastic Neuroepithelial Tumor and Rosette Forming Glioneuronal Tumor, a Case Report and Literature Review. Journal of Nuerological Science, 373, 280-284.
https://doi.org/10.1016/j.jns.2016.11.003
[25]  McDonell, L.M., Kernohan, K.D., Boycott, K.M. and Sawyer, S.L. (2015) Receptor Tyrosine Kinase Mutations in Developmental Syndromes and Cancer: Two Sides of the Same Coin. Human Molecular Genetics, 24, R60-R66.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572000/pdf/ddv254.pdf
https://doi.org/10.1093/hmg/ddv254
[26]  Helen, M., Hemida, M.A. and Leslie, N.R. (2017) Prostate Cancer, PI3K, PTEN Prognosis. Clinical Science, 131, 197-210.
https://pubmed.ncbi.nlm.nih.gov/28057891
https://doi.org/10.1042/CS20160026
[27]  Zhou, J., Wu, Z., Wong, G., Pectasides, E., Nagaraja, A., Stachler, M., Zhang, H., Chen, T.,Zhang, H., Liu, J., Xu, X., Sicinska, E., Sanchez-Vega, F., Rustgi, A., Diehl, J., Wong, K. and Bass, A. (2017) CDK4/6 or MAPK Blockade Enhances Efficacy of EGFR Inhibition in Oesophageal Squamous Cell Carcinoma. Nature Communications, 8, Article No. 13897.
https://www.nature.com/articles/ncomms13897
https://doi.org/10.1038/ncomms13897
[28]  Leary, A., Auclin, E., Pautier, P. and Lhomme, C. (2013) The PI3/AKT/MTOR Pathway in Ovarian Cancer: Biological Rationale and Therapeutic Opportunities. IntechOpen, London.
https://www.intechopen.com/chapters/43352
https://doi.org/10.5772/54170
[29]  Sierra, J.R., Cepero, V. and Giordano, S. (2010) Molecular Mechanism of Acquired Resistance to Tyrosine Kinase Targeted Therapy. Molecular Cancer, 9, Article No. 75.
https://pubmed.ncbi.nlm.nih.gov/20385023/
https://doi.org/10.1186/1476-4598-9-75
[30]  Tan, A.K., Vyse, S. and Huang, P.H. (2016) Exploiting Receptor Tyrosine Kinase Co-Activation for Cancer Therapy. Drug Discovery Today, 22, 72-84.
https://doi.org/10.1016/j.drudis.2016.07.010
[31]  Pan, H., Liu, R., Li, S., Fang, H., Wang, Z., Huang, S. and Zhou, J. (2014) Effects of Icotinib on Advanced Non-Small Cell Lung Cancer with Different EGFR Phenotypes. Cell Biochemistry and Biophysics, 70, 553-558.
https://pubmed.ncbi.nlm.nih.gov/24777808
[32]  Farsangi, M.H. (2014) Small Molecular Inhibition of the Receptor Tyrosine Kinase Promising Tools for Targeted Cancer Therapies. International Journal of Molecular Science, 15, 13768-13801.
https://pubmed.ncbi.nlm.nih.gov/25110867
[33]  Glassman, P.M. and Balthasar, J.P. (2014) Mechanistic Consideration for the Use of Monoclonal Antibodies for Cancer Therapy. Cancer Biology & Medicine, 11, 20-33.
https://pubmed.ncbi.nlm.nih.gov/24738036
[34]  Rosell, R., Karachaliou, N., Codony, J., Teixido, C., Roman, S.G., Morales, D., Cao, M.G., Viteri, S., Vliz, I., Loo, Y. and Castillo, O. (2014) A Critical Question for Cancer Therapy: What New Targets Exist. Translation Lung Cancer Research, 3, 384-388.
http://tlcr.amegroups.com/article/view/2971/4019
[35]  Bhamidipati, P.K., Kantarjian, H., Cortes, J., Cornelison, M. and Jabbar, E. (2013) Management of Imatinib-Resistance Patients with Chronic Myeloid Leukemia. Therapeutic Advances in Hematology, 4, 103-117.
https://doi.org/10.1177/2040620712468289
[36]  Nussinov, R., Tsai, C.J. and Jang, H. (2017) A New View of Pathway Driven Drug Resistance in Tumor Proliferation. Trends in Pharmacological Science, 38, 427-437.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403593
[37]  Wallweber, H.J.A., Tam, C., Franke, Y., Mellisa, A.S. and Lupardus, P.J. (2014) Structural Basis of Recognition of Interferon-Alpha Receptor by Tyrosine Kinase 2. Nature Structural and Molecular Biology, 21, 443-448.
http://www.nature.com/nsmb/journal/v21/n5/abs/nsmb.2807.html
https://doi.org/10.1038/nsmb.2807

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133