|
基于PID控制策略的机械臂轨迹跟踪控制
|
Abstract:
关节机器人的轨迹跟踪控制,是指对各关节给定力矩驱动机器人的关节角、角速度等运动学参数跟踪给定的期望值,使机器人各关节能够获得期望的轨迹。在一般的仿真实验中,通常使用机械臂动力学方法来构建机械臂的数学模型。但受机械臂的不确定性以及测量误差等因素的影响,构建的机械臂数学模型往往不够精准,导致仿真实验结果不够精准。本文针对ABB-IRB120型号六自由度关节机械臂的轨迹跟踪控制问题进行研究。首先建立六自由度关节机械臂的D-H参数,并根据机械臂连杆链接关系制作ABB-IRB120型号六自由度关节机械臂的可视化模型。介绍PID控制的基本原理,并基于MATLAB软件中Simulink平台基于PID控制算法对六自由度关节机械臂进行轨迹跟踪的可视化仿真实验。根据仿真实验结果存在的跟踪效果不够完美的问题,提出并设计滑模PID控制器,基于改进的PID控制器对六自由度关节机械臂进行轨迹跟踪的可视化仿真实验,得出改进的PID控制器具有快速的响应、良好的稳定性和控制精度等特点。
The trajectory tracking control of the joint robot refers to the given torque of each joint to drive the joint angle, angular velocity and other kinematic parameters of the robot to track the given expected value, so that each joint of the robot can obtain the desired trajectory. In general simulation experiments, the mechanical arm dynamics method is usually used to construct the mathematical model of the manipulator. However, affected by factors such as the uncertainty of the manipulator and the measurement error, the mathematical model of the manipulator constructed is often not accurate enough, resulting in inaccurate simulation results. This paper studies the trajectory tracking control problem of the ABB-IRB120 six-degree-of-freedom joint manipulator. Firstly, the D-H parameters of the 6-DOF joint manipulator are established, and the visual model of the ABB-IRB120 6-DOF joint manipulator is made according to the link relationship of the manipulator. The basic principle of PID control is introduced, and a visual simulation experiment of trajectory tracking of a six-degree-of-freedom joint manipulator based on the PID control algorithm on the Simulink platform in MATLAB software is introduced. According to the problem that the tracking effect is not perfect in the simulation experiment results, a sliding mode PID controller is proposed and designed. Based on the visual simulation experiment of trajectory tracking of the six-degree-of-freedom joint manipulator based on the improved PID controller, the improved PID controller is obtained. It has the characteristics of fast response, good stability and control precision.
[1] | 郑美茹. 基于模糊控制理论的机械臂PID控制算法优化设计[J]. 工业加热, 2021, 50(9): 41-44. |
[2] | 蔡展鹏. 六轴工业机械臂关节控制方法研究[D]: [硕士学位论文]. 太原: 中北大学, 2021. |
[3] | 王娜. 基于Simulink的机械臂PID算法优化设计与实现[J]. 电子设计工程, 2020, 28(4): 158-162. |
[4] | 杜美君, 张伟, 谢亚莲. 基于粒子群算法的PID控制器参数优化[J]. 电子科技, 2019, 32(6): 7-11. |
[5] | 代迎. 面向机械臂的智能PID控制方法研究[D]: [硕士学位论文]. 沈阳: 沈阳理工大学, 2016. |
[6] | 段学超, 仇原鹰, 段宝岩. 并联机器人系统自适应交互PID监督控制[J]. 机械工程学报, 2010, 46(1): 10-17. |
[7] | 赵东辉, 侯军兴. 双臂空间机器人滑模与自适应模糊复合控制[J]. 组合机床与自动化加工技术, 2020(12): 93-96. |
[8] | 宁煜. 基于改进PID控制的三关节机械臂运动轨迹跟踪误差研究[J]. 机械设计与制造工程, 2018, 47(8): 107-110. |
[9] | 景包睿. 二自由度机械臂建模与控制研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2017. |
[10] | 王会方, 朱世强, 刘松国. 具有H∞跟踪性能的机器人自适应PID控制[J]. 控制与决策, 2009, 24(10): 1585-1588+1592. |
[11] | 李沈炎, 韩亚丽, 陈茹雯, 吴枫, 糜章章. 基于滑模PID控制的下肢康复外骨骼控制研究[J]. 组合机床与自动化加工技术, 2021(3): 98-101+105. |