全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向人工智能的军队网络安全试验鉴定研究
Research on the Military Cyber Security Test and Evaluation for Artificial Intelligence

DOI: 10.12677/AIRR.2022.112017, PP. 158-163

Keywords: 人工智能,网络安全,试验靶场,网络攻防,网络安全试验鉴定
Artificial Intelligence
, Network Security, Cyber Range, Network Attack and Defense, Cyber-Security Test and Evaluation

Full-Text   Cite this paper   Add to My Lib

Abstract:

信息网络技术作为武器装备的力量倍增器,在现代战争中地位与作用凸显,防止针对信息网络系统脆弱性的攻击,确保武器装备网络安全也变得尤为重要,试验鉴定技术是确保网络安全的重要手段,而随着大数据、人工智能等技术快速发展,基于智能化的网络安全与攻防技术对国家、军队信息网络安全提出了全新的挑战,也对试验鉴定工作提出更高要求。本文首先对“网络安全试验鉴定”概念进行阐述;其次,探讨了美军网络安全试验鉴定工作的内容与流程,最后,从人工智能为网络安全试验鉴定能力带来的重大挑战,引申出我军发展人工智能网络安全试验鉴定的几点做法和建议。
As a force multiplier of weapons and equipment, information network technology has a prominent position and role in modern warfare. It has become particularly important to avoid attacks on the vulnerability of information network systems and ensure the network security of weapons and equipment. It is an important means of network security, and with the rapid development of big data, artificial intelligence and other technologies, intelligent network security and attack and defense technologies have posed new challenges to the national and military information network security, and also put forward higher requirements for test evaluation. This paper first expounds the concept of “network security test and evaluation”, and examines the content requirements of the US military’s network security test and evaluation work. Secondly, based on the major challenges of network security test and evaluation capabilities by artificial intelligence, it is extended to the development of artificial intelligence networks in our military, with several practices and suggestions for safety test identification.

References

[1]  刘映国, 薛卫, 谢伟朋, 郑超. 美军国防采办政策改革及启示[J]. 国防科技, 2021, 42(6): 64-68+76.
[2]  刘映国. 美军网络安全试验鉴定[M]. 北京: 国防工业出版社, 2018.
[3]  Lecun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539
[4]  Guo, Z.Q., Hu, W.X., Zhang, C.J., et al. (2020) Gradient Shileding: Towards Understanding Vulnerability of Deep Neural Network. IEEE Transactions on Network Science and Engineering, 8, 921-932.
[5]  Hu, W.W. and Tan, Y. (2021) Generating Adversarial Malware Examples for Black-Box Attacks Based on Gan.
https://arxiv.org/pdf/1702.05983.pdf
[6]  陈彩辉, 线珊珊. 美军“联合全域作战(JADO)”概念浅析[J]. 中国电子科学院学报, 2020, 15(10): 917-921.
[7]  裴晔晔, 倪得晶, 陶智刚, 赵宇. 美军国防信息基础设施体系建设发展与启示[J]. 指挥信息系统与技术, 2012, 12(6): 7-13.
[8]  管传靖. 安全化操作与美国全球供应链政策的战略性调适[J]. 国际安全研究, 2022, 40(1): 73-99.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133