|
踝关节康复机器人研究进展
|
Abstract:
脑卒中具有发病人群数量多、致残率高的特点,给社会和患者家庭带来极大的痛苦。踝关节作为人体远端关节,康复效果对生活质量具有重要影响。而传统人工辅助康复治疗的方式,人力成本高,患者的康复训练效果与治疗师的经验密切相关。康复机器人具有运动准确、稳定性好、训练均一性可控等优点,具有良好的应用前景。国内外研究者已经在康复机器人领域开展了大量的研究工作。本文对近几年来国内外踝关节康复机器人的机械设计和控制策略的研究现状进行了较为详细的分类研究,机械设计研究分类为穿戴方式、驱动方式和结构,控制策略研究分类为导纳控制、阻抗控制、轨迹跟踪控制和人机交互等,并分析了发展趋势和所面临的挑战,最后对踝关节康复机器人研究现状进行总结。
Stroke has the characteristics of large number of people and high disability rate, which brings great pain to the society and patients’ families. As the distal joint of human body, the rehabilitation effect of ankle has an important impact on the quality of life. The traditional artificial assisted rehabilitation treatment has high labor cost, and the rehabilitation training effect of patients is closely related to the experience of therapists. Rehabilitation robot has the advantages of accurate movement, good stability and controllable training uniformity, and has a good application prospect. Researchers at home and abroad have carried out a lot of research work in the field of rehabilitation robot. In this paper, the research status of mechanical design and control strategy of ankle rehabilitation robot at home and abroad in recent years is classified in detail. The mechanical design research is divided into wearing mode, driving mode and structure, and the control strategy research is divided into admittance control, impedance control, trajectory tracking control and human-computer interaction. The development trend and challenges are analyzed. Finally, the research status of ankle rehabilitation robot is summarized.
[1] | 刘彦, 陆美华. 探讨品管圈干预对提高孕晚期妇女母乳喂养自我效能的效果[J]. 中国医药科学, 2017, 15(14): 109-111. |
[2] | 吕星, 王春宝, 段丽红, 吴正治, 王玉龙, 韦建军, 龙建军, 刘铨权, 申亚京, 尚万峰, 林焯华, 陆志祥, 陈晓娇. 偏瘫患者下肢康复机器人的研究进展[J]. 深圳中西医结合杂志, 2019, 29(11): 187-190. |
[3] | Siviy, C., Bae, J., Baker, L., Porciuncula, F., Baker, T., Ellis, T.D, Awad, L.N. and Walsh, C.J. (2020) Offline Assistance Optimization of a Soft Exosuit for Augmenting Ankle Power of Stroke Survivors during Walking. IEEE Robotics and Automation Letters, 5, 828-835. https://doi.org/10.1109/LRA.2020.2965072 |
[4] | Tamburella, F., Tagliamonte, N.L., Pisotta, I., Masciullo, M., Arquilla, M., van Asseldonk, E.H.F., van der Kooij, H., Wu, A.R., Dzeladini, F., Ijspeert, A.J. and Molinari, M. (2020) Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton: Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28, 1157-1167.
https://doi.org/10.1109/TNSRE.2020.2984790 |
[5] | Kwon, J., Park, J., Ku, S., Jeong, Y., Paik, N. and Park, Y. (2019) A Soft Wearable Robotic Ankle-Foot-Orthosis for Post-Stroke Patients. IEEE Robotics and Automation Letters, 4, 2547-2552.
https://doi.org/10.1109/LRA.2019.2908491 |
[6] | Pinheiro, C., Magalhes, N., Figueiredo, J., et al. (2020) Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants. Sensors, 20, 5876. https://doi.org/10.3390/s20205876 |
[7] | Orekhov, G., Fang, Y., Luque, J. and Lerner, Z.F. (2020) Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals with Cerebral Palsy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28, 461-467. https://doi.org/10.1109/TNSRE.2020.2965029 |
[8] | Gasparri, G.M., Luque, J. and Lerner, Z.F. (2019) Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27, 751-759.
https://doi.org/10.1109/TNSRE.2019.2905979 |
[9] | Ren, Y.P., Wu, Y.-N., Yang, C.-Y., Xu, T., Harvey Richard, L. and Zhang, L.-Q. (2017) Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 589-596. |
[10] | Chen, B., Zi, B., Wang, Z., et al. (2020) Development of Robotic Ankle-Foot Orthosis with Series Elastic Actuator and Magneto-Rheological Brake. Journal of Mechanisms and Robotics, 13, 011002. https://doi.org/10.1115/1.4047987 |
[11] | Yeung, L.F., Lau, C.C., Lai, C.W., et al. (2020) Effects of Wearable Ankle Robotics for Stair and Over-Ground Training on Sub-acute Stroke: A Randomized Controlled Trial. (Preprint) https://doi.org/10.21203/rs.3.rs-34302/v1 |
[12] | Mu, Z.L., Zhang, Q.J., Yang, G.-Y., Xie, L. and Fang, J. (2020) Development of an Improved Rotational Orthosis for Walking with Arm Swing and Active Ankle Control. Frontiers in Neurorobotics, 14, 17
https://doi.org/10.3389/fnbot.2020.00017 |
[13] | Zuo, S.P., Li, J.F., Dong, M.J., Zhou, X.D., Fan, W.P. and Kong, Y. (2020) Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Frontiers in Neurorobotics, 14, 9.
https://doi.org/10.3389/fnbot.2020.00009 |
[14] | Dong, M.J., Kong, Y., Li, J.F., Fan, W.P. and Rizzuto, E. (2020) Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot. Journal of Healthcare Engineering, 2020, Article ID: 3053629.
https://doi.org/10.1155/2020/3053629 |
[15] | Zeng, D., Wu, H., Zhao, X., et al. (2020) A New Type of Ankle-Foot Rehabilitation Robot Based on Muscle Motor Characteristics. IEEE Access, 8, 215915-215927. https://doi.org/10.1109/ACCESS.2020.3040886 |
[16] | 刘延斌, 庞翔元, 张彦斌, 郭冰菁, 韩建海. 踝关节康复机器人主动训练柔顺控制研究[J]. 系统仿真学报, 2020, 32(1): 54-60. |
[17] | Liu, Q.Q., Wang, C.B., Long, J.J., Sun, T.Y., Duan, L.H., Zhang, X., Zhang, B., Shen, Y.J., Shang, W.F., Lin, Z.H., Wang, Y.L., Xia, J.F., Wei, J.J., Li, W.G., Wu, Z.Z. and Affatato, S. (2018) Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke. Journal of Healthcare Engineering, 2018, Article ID: 3867243. https://doi.org/10.1155/2018/3867243 |
[18] | Ao, D., Song, R. and Gao, J.W. (2017) Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 1125-1134. https://doi.org/10.1109/TNSRE.2016.2583464 |
[19] | Asín-Prieto, G., Martínez-Expósito, A., Barroso, F.O., Urendes, E.J., Gonzalez-Vargas, J., Alnajjar, F.S., González-Alted, C., Shimoda, S., Pons, J.L. and Moreno, J.C. (2020) Haptic Adaptive Feedback to Promote Motor Learning with a Robotic Ankle Exoskeleton Integrated with a Video Game. Frontiers in Bioengineering and Biotechnology, 8, 113.
https://doi.org/10.3389/fbioe.2020.00113 |
[20] | Bae, E.K., Park, S.-E., Moon, Y., Chun, I.T., Chun, M.H. and Choi, J. (2020) A Robotic Gait Training System with Stair-climbing Mode Based on a Unique Exoskeleton Structure with Active Foot Plates. International Journal of Control, Automation and Systems, 18, 196-205. https://doi.org/10.1007/s12555-019-0260-9 |
[21] | Nurahmi, L., Caro, S. and Solichin, M. (2019) A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator. Mechanism and Machine Theory, 134, 135-150.
https://doi.org/10.1016/j.mechmachtheory.2018.12.017 |
[22] | Jamwal, P.K., Hussain, S., Yun, H.T., et al. (2020) Musculoskeletal Model for Path Generation and Modification of an Ankle Rehabilitation Robot. IEEE Transactions on Human-Machine Systems, 50, C2-C2.
https://doi.org/10.1109/THMS.2020.3021781 |
[23] | Abu-Dakka, F.J., Valera, A., Escalera, J.A., Abderrahim, M., Page, A. and Mata, V. (2020) Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework. Sensors, 20, 6215.
https://doi.org/10.3390/s20216215 |
[24] | Pérez-Ibarra, J.C., Siqueira, A., Silva-Couto, M.A., et al. (2018) Adaptive Impedance Control Applied to Robot-Aided Neuro-Rehabilitation of the Ankle. IEEE Robotics and Automation Letters, 4, 185-192.
https://doi.org/10.1109/LRA.2018.2885165 |
[25] | Zhuang, Y., Leng, Y., Zhou, J., et al. (2020) Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme. IEEE Transactions on Bio-Medical Engineering, 68, 695-705. |
[26] | 樊晓琴, 李瑞琴, 李庠, 郭旺旺, 王秀娇. (2-SPS+PU)&R混联式踝关节康复机器人及运动学性能分析[J]. 机械科学与技术, 2019, 38(7): 1035-1040. |
[27] | 王海芳, 陈晓波, 张瑶, 焦龙, 李新庆, 朱亚锟. 3-SPS/S踝关节并联式康复机器人设计[J]. 中国工程机械学报, 2020, 18(3): 237-241, 247. |
[28] | 李大顺, 李剑锋, 王飒, 张琪涣. 并联3-RRS踝关节康复机构及运动分析[J]. 机械设计与制造, 2015(8): 4-8. |
[29] | 刘兴芳, 苗鸿宾, 陈菁瑶, 刘娜. 并联3-SPS/S踝关节康复机构及运动分析[J]. 机械传动, 2018, 42(3): 9-12. |
[30] | Li, J.F., Zuo, S.P., Zhang, L.Y., Dong, M.J., Zhang, Z.K., Tao, C.J. and Ji, R. (2020) Mechanical Design and Performance Analysis of a Novel Parallel Robot for Ankle Rehabilitation. Journal of Mechanisms and Robotics, 12, 051007.
https://doi.org/10.1115/1.4046511 |
[31] | Wei, M., Sheng, Q.X., Quan, L., et al. (2017) Robust Iterative Feedback Tuning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training. IEEE/ASME Transactions on Mechatronics, 22, 173-184.
https://doi.org/10.1109/TMECH.2016.2618771 |
[32] | Ai, Q.S., Zhu, C.X., Zuo, J., Meng, W., Liu, Q., Xie, S.Q. and Yang, M. (2017) Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Sensors (Basel, Switzerland), 18, 66. https://doi.org/10.3390/s18010066 |
[33] | Chang, T.-C. and Zhang, X.-D. (2019) Kinematics and Reliable Analysis of Decoupled Parallel Mechanism for Ankle. Rehabilitation. Microelectronics Reliability, 99, 203-212. https://doi.org/10.1016/j.microrel.2019.05.016 |
[34] | Wang, C.D., Wang, L.W., Wang, T.H., Li, H.P., Du, W.L., Meng, F.N. and Zhang, W.W. (2019) Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism. Applied Bionics and Biomechanics. https://doi.org/10.1155/2019/7071064 |
[35] | 刘其洪, 卢志江, 王春宝, 李伟光, 李梦杰, 孙同阳, 段丽红, 王玉龙, 吴正治, 秦鉴, 韦建军. 踝关节智能康复机器人的设计[J]. 现代制造工程, 2016(9): 39-43. |